
Proceedings of the AAAI-07 Mobile Robots Workshop, July 2007, Vancouver, Canada. 1

Extending Tekkotsu to New Platforms for Cognitive Robotics

Ethan J. Tira-Thompson
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Glenn V. Nickens ∗

Dept. of Computer & Info. Science
University of the District of Columbia

Washington, DC 20008

David S. Touretzky
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Tekkotsu is an open source application development
framework for mobile robots that promotes a high level
approach or robot programming which we call “cogni-
tive robotics”. Originally developed for the Sony AIBO,
Tekkotsu now supports a variety of platforms under the
Linux and Mac OS X operating systems. We present
the first version of a new educational robotics plat-
form, Regis, designed specifically for teaching cogni-
tive robotics.

Introduction

The use of inexpensive platforms has profoundly limited in-
troductory robotics courses. In many instances, students
spend considerable time on robot construction. This is re-
quired in Lego Mindstorms-based courses, but also occurs in
other courses where students assemble small wheeled carts
with single-board microprocessor controllers. While robot
building is a good way to learn mechanical engineering con-
cepts, it consumes valuable time that would be better spent
on topics connected to robotic intelligence. Furthermore, the
types of robots beginning students can build are crude com-
pared to the platforms they would want to use for intelligent
perception and manipulation. We advocate a different strat-
egy for introducing computer science students to robotics.

Tekkotsu1 is an open source application development
framework for mobile robots that promotes a high level
approach to robot programming which we call “cognitive
robotics”. Cognitive robotics draws inspiration from – and
makes explicit reference to – ideas in cognitive science.2 It
encourages students to focus on problems in perception and
manipulation rather than merely reacting to raw sensor val-
ues by turning motors on and off.

Tekkotsu was originally developed for the Sony AIBO
robot dog, which at the time was the only reasonably-priced

∗Current address: Computer Science Department, Norfolk
State University, Norfolk, VA 23504.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The name Tekkotsu means “skeleton” or “framework” (liter-
ally “iron bones”) in Japanese.

2The term “cognitive robotics” is used in a variety of ways by
other research groups.

educational platform powerful enough to support this ap-
proach. Since the AIBO is no longer offered for sale,
and comparably-priced alternatives are not yet available, we
have reengineered Tekkotsu to support a variety of other
platforms, including the Qwerkbot+ (Nourbakhsh et al.,
2007a; Nourbakhsh et al., 2007b) and Lynx Motion Servo
Erector Set arm (Lynx Motion, 2007). We have also be-
gun exploring our own designs that can be assembled from
off-the-shelf components and better meet the needs of the
cognitive robotics curriculum. Our first such design, Regis,
is presented here.

An undergraduate course in Cognitive Robotics using
Tekkotsu on the AIBO has been taught twice at Carnegie
Mellon, and will be taught for a third time in January
2008. The lecture notes, labs, and homework assignments
are freely available via the Tekkotsu.org web site, as is
the Tekkotsu software itself. Courses and directed research
projects utilizing some of this material have also been of-
fered at Spelman College, the University of the District of
Columbia, Hampton University, and Florida A&M Univer-
sity under a grant from the National Science Foundation’s
Broadening Participation in Computing Program (Williams
et al., 2007).

Cognitive Robotics

The central thesis of cognitive robotics is that ideas in cogni-
tive science about perception and manipulation can inspire
the design of robot primitives and give us a language for
talking about them. Some examples include visual rou-
tines (Ullman, 1984), dual-coding theory (Paivio, 1986),
affordances (Gibson, 1979), and motor schemas (Schmidt,
1975). Because perception and manipulation remain un-
solved problems, we cannot expect these theoretical propos-
als to be directly translatable into running code. The re-
lationship is more subtle, and engineering is also a promi-
nent consideration because our solutions must work on real
robots. So the cognitive robotics philosophy is really a two-
part argument:

1. Beginning robot programmers are better served by pro-
viding them with high-level primitives for perception and
manipulation, allowing them to implement more inter-
esting behaviors than would be possible with lower-level
primitives.

Proceedings of the AAAI-07 Mobile Robots Workshop, July 2007, Vancouver, Canada. 2

2. Robotics students should have some appreciation for how
cognitive science theories of perception and manipulation
can inform the design of these primitives.

To give a specific example: Paivio’s dual-coding theory
of mental representations posits complementary imagistic
and verbal representations with extensive referential con-
nections between them. Tekkotsu’s vision system follows
this approach, offering iconic (pixel-based) and symbolic
(geometry-based) representations of the robot’s visual world
(Touretzky et al., 2007). The iconic representations can be
manipulated by a set of composable operators inspired by
Ullman’s notion of visual routines. They include operations
such as connected components labeling, seed fill, neighbor
sum, and convex hull. Extraction and rendering operators
convert between iconic and symbolic representations. In
one exercise in the Cognitive Robotics course, students use
a mixture of these primitives, including line and ellipse ex-
traction, line rendering, and region intersection, to parse an
image of a tic-tac-toe board as seen through the robot’s cam-
era.

Tekkotsu Features

Most of Tekkotsu’s features have been described elsewhere
(Tira-Thompson, 2004; Touretzky et al., 2007), so we offer
only a brief summary here:

• Implemented in C++, making extensive use of modern
language features such as templates, multiple inheritance,
and operator overloading.

• Separate threads for high level behavioral control (Main)
and low-level realtime control (Motion) which communi-
cate via shared memory (Figure 1).

• Event-based, message passing architecture for communi-
cation among Tekkotsu components. (Tekkotsu provides
its own specialized event router.)

• “Transparency” of operation, via a suite of GUI tools for
robot monitoring and teleoperation. The tools are imple-
mented in Java for portability, and run on a PC, commu-
nicating with the robot via wireless Ethernet.

• Hierarchical state machine formalism for defining com-
plex behaviors, with fork/join operators for parallel exe-
cution.

• Pipelined low-level vision system, including color image
segmentation and blob detection using CMVision (Bruce
et al., 2000).

• Automated map building, using the dual-coding vision
system.

• Localization, using a particle filter.

• Forward and inverse kinematics solvers.

• Inter-robot communication via an extension to the
Tekkotsu message passing formalism.

• Human-robot interaction primitives using a remote dis-
play controlled by the robot.

• Simulator for debugging code on a PC.

Motion ProcessMain Process

WorldState

MotionCommands

erouter erouter

Sensor Updates

from host

hardware

Output Values

sent to host

hardware

Events forwarded

through inter-process

message queue

polled

~30Hz

Behaviors motman

MotionManager

Behaviors can

create new

MotionCommands

state

Figure 1: The Main thread is responsible for high-level
deliberative behavior, while the Motion thread implements
low-level realtime control, receiving sensor updates and
controlling the robot’s effectors at around 30 Hz. The two
threads communicate via two types of shared memory struc-
tures: WorldState contains robot state information, and Mo-
tionCommands describe motions the robot is to perform.
Behaviors running in Main can generate MotionCommands
which are then executed by the motion manager running in
Motion.

• Released as open source, free software under the Gnu
Lesser General Public License (LGPL). The code is avail-
able at Tekkotsu.org.

Hardware Abstraction Layer

The imminent release of Tekkotsu 4.0 includes a new Hard-
ware Abstraction Layer which allows behaviors to run on a
wide variety of devices and architectures.

Each hardware device interface is a subclass of the De-
viceDriver class (Figure 2). Drivers can receive motion in-
structions from Tekkotsu, and return sensor or image data
(Figure 3. Drivers are provided for:

• SSC-32 servo controller from Lynx Motion

• Telepresence Robotics Kit (TeRK) interface for Charmed
Labs’ Qwerk board

• Previously recorded images and sensor values to be
loaded from disk (for debugging and simulation)

• Live video from either local cameras or network streams

Where possible, communication between a device and
Tekkotsu is abstracted by one of a variety of CommPort
subclasses for interfaces such as file system devices, net-
work sockets, serial ports, and binary executables (commu-
nicating via pipes). This allows us to separate the transport
mechanism from the device protocol, increasing flexibility
and reusability. For example, the SSC-32 servo controller
can be sent commands either by writing them to a serial port
on the local host, or by piping the commands over a net-

Proceedings of the AAAI-07 Mobile Robots Workshop, July 2007, Vancouver, Canada. 3

InstanceTracker

<CommPort>

DeviceDriver

NetworkCommPort

FileSystemCommPort

NetworkCommPort

MotionHook

getMotionSink()

DataSource(s)

getSensorSources()

DataSource(s)

getImageSources()

DeviceDriver

MotionHook

getMotionSink()

DataSource(s)

getSensorSources()

DataSource(s)

getImageSources()

DeviceDriver

MotionHook

getMotionSink()

DataSource(s)

getSensorSources()

DataSource(s)

getImageSources()

InstanceTracker

<DeviceDriver>

Host: kuda

Port: 1234

Transport: TCP

Host: kuda

Port: 4567

Transport: UDP

Path: /dev/ttyS0

ExecutableCommPort

Path: /bin/vendor_blob

Figure 2: Device drivers and comm ports in Tekkotsu’s hard-
ware abstraction layer. The device driver knows how to for-
mat data for a servo controller board or image stream; the
comm port knows how to transport the data over a socket,
filesystem interface, serial port, or Unix pipe.

DataSource

“Foo.B”

DataSource

“Bar.A”

LoadDataThread

“Main” Thread

Source=Foo.A

getData(...)

providingOutput(...)
WorldState

returns payload

blocks until

data available

DataSource

“Foo.A”

Sensors,

cameras,

joint positions

Inter-process

message queue

Hardware Abstraction Process/Thread-group

Main Process/Thread-group
Motion Process/Thread-group

“Motion” Thread

A

A

B

B C

C

0 0 0

Figure 3: The data source Foo.A in the upper right is re-
ceiving sensor data, and has indicated it is providing feed-
back for some of the outputs (effector values). An example
would be commanding a joint to move to a certain position;
the feedback would be the actual position reported by the
encoder. The payload from data source Foo.A is passed to
the Main thread, which inserts the values into WorldState.
Meanwhile, the Motion thread supplies values for other out-
puts; these will be commanded values, since the actual val-
ues aren’t available (e.g., there may not be encoders on those
joints.)

MotionHooks

MotionHooks

MotionHooks

Motion Thread

or direct interface

LEDs, etc.

Motors, servos

Broadcast

“output” values

CommPort

Figure 4: The Motion thread interprets MotionCommands
and generates a stream of desired effector values at around
30 Hz. These values are then sent to the effectors, either
directly if the device is local, or via a CommPort for remote
devices.

work connection to a remote device (such as a Gumstix) that
forwards them to the SSC-32.

In this way, a Tekkotsu process can control a variety of lo-
cal and/or remote devices as desired by the user (Figure 4).
The configuration of CommPorts and DeviceDrivers can be
read from a file at launch, or dynamically reconfigured from
the Tekkotsu command prompt. Users can switch between
running on-board for reduced latency, off-board for maxi-
mum computational power, or even combinations of both
for distributed control.

The Design of Regis

Regis is a prototype educational robot developed as an in-
terim replacement for the AIBO, specifically for cognitive
robotics (Figure 6). The principal design criteria for Regis
are listed below:

Tabletop-friendly. The robot should be small enough
to wander around comfortably on a tabletop. While larger
platforms can hold more computers, sensors, batteries, etc.,
and are better suited for human-scale navigation tasks such
as tour guides or office deliveries, they are impractical in
a classroom setting where multiple robots will be in use at
once. Regis is somewhat larger than an AIBO but can work
on a tabletop.

Adequate computing power. The latest model AIBO,
the ERS-7, used a 576 MHz RISC processor with 64MB
of RAM. Regis uses a 600 MHz Gumstix verdex with 128
MB of RAM. The Gumstix runs Linux and uses the Gnu
toolchain, so users can program in full C++.

Off the shelf components. Regis is constructed al-
most entirely from commercially available robotics hobby-
ist parts. It uses Hitec HS-645MG and HSR-5990TG ser-
vos, a Lynx Motion rover base, and two Lynx Motion servo
erector set arms. The only locally fabricated parts are some
acrylic plate extensions to the rover body to accommodate
the geared servo in the arm shoulder; the webcam mount,
constructed from two plastic bottle caps; and a low-profile
serial port connector, necessary because of limited space in-
side the body.

Economical. The parts for Regis totaled around $1700,
which is less than the $2K retail cost of an AIBO. Several

Proceedings of the AAAI-07 Mobile Robots Workshop, July 2007, Vancouver, Canada. 4

Figure 5: View of the gripper from the robot’s webcam
with the goose neck positioned overhead, looking down.
Left: raw JPEG image; right: color segmented image from
Tekkotsu vision pipeline.

types of legged robots proposed as AIBO replacements to
the RoboCup federation in the summer of 2007 had costs
estimated at around $4K, so Regis is competitive as a lower
cost alternative.

Regis also has some unique features specific to its in-
tended use in cognitive robotics instruction:

“Goose neck” webcam. Most robot designers put the
camera in the wrong place. They mount it so that the robot
can avoid obstacles, but cannot see much of its own body.
This is a serious problem if the robot is expected to manip-
ulate objects. Robots without grippers are still capable of
manipulation by using their bodies to push against an ob-
ject, but visual feedback is necessary if an object is to be
positioned precisely. If the robot cannot see the point of con-
tact between its body and the object, obtaining the necessary
feedback becomes more difficult. For fine manipulation with
a gripper the problem is much more acute.

Regis solves this problem by mounting the camera at the
end of a long 4-dof arm called the “goose neck”. The arm
can rotate at the base; the remaining three degrees of free-
dom (shoulder, elbow, wrist) lie in the plane. The goose
neck is long enough that it can lean forward and look down
on the gripper (Figure 5). It can also point straight up and
get a “big picture” view of the robot’s workspace, or turn to
the side and observe the robot’s wheels.

“Crab arm” manipulator. A common design for a sim-
ple robot arm, such as the Rhino, or the Lynx Motion family
of arms, is a three-link planar configuration mounted on a
rotating base. The plane of the arm is perpendicular to the
workspace, as this affords the greatest workspace area and
allows the arm to reach over one object to get to another.
However, this approach makes visual servoing difficult be-
cause the arm often obstructs the camera’s view.

Regis’s 6-dof arm uses a different design. It is called
a crab arm because it extends from the front of the robot,
not the top, and in crab mode it lies in the plane of the
workspace. Because hobby servos have at most 180◦ of
motion, the crab arm has a limited reach, but this can be
increase by rotating the shoulder by 180◦ to flip the arm
over. It is also possible to take the arm out of the plane
of the workspace by rotating the shoulder by 90◦, as shown
in the bottom right image of Figure 6. However, in this ver-
tical configuration the arm can travel forward/backward and
up/down, but not left/right, so we would have to rely on the

wheels to rotate the arm in the plane of the workspace.
The principal drawback of the crab arm design is that it

places a fair amount of weight forward of the front wheels.
Regis’ batteries are mounted as far aft as possible, to act as
a counterweight. The arm also extends the overall length of
the robot by a considerable amount.

Operating in the plane of the workspace increases the
chance of collisions with other objects. We will have to see
how much of a problem this turns out to be in practice.

Future Work

In the coming year we expect to refine the design of our cog-
nitive robotics platform by building either a second version
of the Regis prototype or a hexapod walker with gripper. In
either case, we will continue to use a goose neck webcam so
the robot can view its own body.

We are also working on developing manipulation primi-
tives that use visual servoing to grasp or push objects. This
will require coordinated control of the goose neck and crab
arm. One way to address this problem is to develop a set of
stereotyped motion schemas with a small number of param-
eters each. For example, to grasp an object we may want to
bring the goose neck in close in order to increase the reso-
lution of the image. Once the object is firmly in hand, we
will want to bring the goose neck to a more vertical position
to increase the camera’s field of view, and also to get it out
of the way of the arm should we decide to switch from crab
arm mode to vertical mode.

Once we are satisfied with our design, we plan to follow
the example of Nourbakhsh et al. and publish a recipe for
constructing this robot. This is why we have tried to restrict
ourselves to off-the-shelf parts.

Tekkotsu’s new hardware abstraction layer makes it easy
to extend support to additional platforms, and we are in
the process of adding support for the iRobot Create. The
same Qwerk controller board that runs the Qwerkbot has
been used to control a Create, but we may also develop a
Gumstix-based solution so that Tekkotsu can run on-board
the robot instead of teleoperating it.

Finally, we are continuing to add primitives to Tekkotsu’s
vision system. Currently we’re working on adding a SIFT-
like object recognition facility which can be integrated with
the existing map building code.

Acknowledgments

This research was supported by the National Science Foun-
dation’s Broadening Participation in Computing program
through award number 0540521 to DST.

References

Bruce, J., Balch, T., and Veloso, M. 2000. fast and inex-
pensive color image segmentation for interactive robots. In
Proceedings of the 2000 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS ’00), volume
3, 2061–2066.

Gibson, J. J. 1979. The Ecological Approach to Visual Per-
ception. Boston: Houghton Mifflin.

Proceedings of the AAAI-07 Mobile Robots Workshop, July 2007, Vancouver, Canada. 5

Figure 6: The Regis prototype posing with the second author. Note the variety of configurations of the “goose neck” webcam
and “crab arm” manipulator with gripper.

Lynx Motion, Inc. 2007. Rover and robotic arm descrip-
tions available at www.lynxmotion.com.

Nourbakhsh, I, Hamner, E., Lauwers, T., DiSalvo, C., and
Bernstein, D. 2007. TeRK: A flexible tool for science and
technology education. In Proceedings of AAAI Spring Sym-
posium on Robots and Robot Venues: Resources for AI Ed-
ucation, Stanford, California, March 26–28, 2007.

Nourbakhsh, I., et al. 2007. Telepresence robotics
kit: Qwerkbot+. Robot recipe available online at
www.terk.ri.cmu.edu/recipes/qwerkbot+-recipe.php

Paivio, A. Mental Representations: A Dual-Coding Ap-
proach. New York: Oxford University Press.

Schmidt, R. A. 1975. A schema theory of discrete motor
skill learning. Psychological Review 82:225–260.

Tira-Thompson, E. J. 2004. Tekkotsu: a rapid develop-
ment framework for robotics. MS thesis, Robotic Institute,
Carnegie Mellon University, May 2004. Available online at
tekkotsu.org in the Bibliography section.

Touretzky, D. S., Halelamien, N. S., Tira-Thompson, E.
J., Wales, J. J., and Usui, K. 2007. Dual-coding represen-
tations for robot vision in Tekkotsu. Autonomous Robots
22(4):425–435.

Ullman, S. 1984. Visual routines. Cognition 18:97–159.

Williams, A., Touretzky, D. S., Tira-Thompson, E. J., Man-
ning, L., Boonthum, C., and Allen, C. S. 2007. Introducing
an experimental cognitive robotics curriculum at histori-
cally black colleges. Manuscript under review.

