
Toys and Tools: Accessible Robotics via Laptop Computers 

Morgan Conbere and Zachary Dodds 
 

Harvey Mudd College Computer Science Department 
301 Platt Boulevard 

Claremont, CA 91711 
mconbere, dodds@hmc.edu 

 
 
 

Abstract 
The ubiquity and capability of off-the-shelf laptop 
computers offer robotics and AI researchers a remarkable 
opportunity to reach into the broader computer science 
curriculum. At Harvey Mudd College we have developed 
two “lines” of laptop-controlled robots. The first, based on 
iRobot’s vacuums, provides an inexpensive and autonomous 
platform suitable for indoor, human-scale environments. 
The second, based on PowerWheels toys, offers an 
inexpensive and capable platform for large, outdoor 
navigation and planning tasks.  Both of these platforms 
enable cost- and time-effective undergraduate engagement 
in the ongoing community of robot-themed venues, 
exhibitions, contests, and conferences.  

Overview  
As a small undergraduate institution, Harvey Mudd 
College has sought inexpensive but powerful robotic 
platforms on which to base our AI curricula, independent 
student projects, and faculty-led research investigations. In 
the past decade the number of our students who use 
portable (laptop) computation has risen from almost zero to 
over 50%, and each incoming class seems to continue this 
trend. Leveraging students’ computational resources for 
robotics projects offers us several pedagogical advantages 
over stand-alone platforms: 
 

• Although machines that our department purchases 
grow older each year, students’ laptops get newer 
(along with their owners). 

• Students can develop their robotic software and 
interfaces anywhere: in their dorms, away from 
school, in the lab – whether or not the physical 
robot is present. 

• Developing robot- and sensor-controlling software 
uses the same IDEs, software environments, and 
OSes as their other computational coursework. 

 
The “catch” in the above list is, in fact, the robot itself. 
Until recently, the available mobile platforms could not 
                                                
 Copyright © 2007, American Association for Artificial Intelligence 
(www.aaai.org). All rights reserved. 

provide a price/performance ratio that allowed broad 
deployment within small laboratories and institutions.  
 
Through the 2006-2007 academic year, teams of faculty 
and students at Harvey Mudd College composed the 
interfaces necessary in order to create laptop-controlled 
platforms atop two new and promising educational 
platforms: the iRobot Create and FisherPrice’s  
PowerWheels line of small vehicles. This paper 
summarizes these efforts, their results, and the benefits and 
drawbacks that come with laptop robotics. 

iRobot’s Create: Indoor Autonomy 
The release of the iRobot Create in January, 2007 has set a 
new standard for the capabilities of a programmable, low-
cost mobile platform. We used the Create as our default 
platform for an undergraduate robotics elective in spring 
’07. Pre-built and very rugged, it turned out to be an 
excellent foundation on which to investigate the spatial-
reasoning algorithms that have become the foundation of 
computational robotics: Monte Carlo Localization, 
mapping, path planning, and navigation. 
 
Positives: Easy access, flexible interface 
 
The Create operates as a serial device, either tethered to a 
computer or via a Bluetooth wireless connector, the most 
reliable of which is ElementDirect’s BAM module. The 
platform is thus accessible from any computational 
hardware that “speaks serial.” This includes every 
computer in use today – what’s more, the programming 
language needs only to be able to access the serial port. 
Again, this is universal.  
 
Our students began familiarizing themselves with the 
Create and its Bluetooth interface first by developing a 
wandering algorithm similar to the robot’s preloaded 
wandering routines. Programming the robot to wander in 
response to wall-bumps and odometric thresholds 
motivated students to familiarize themselves with the 
robot’s interface while providing a concrete example of a 
behavior-based robotic system. 
 



Students then implemented Monte Carlo Localization 
(Thrun at al., 2001) using the same two sensors – tactile 
and odometric – in order to maintain a particle-based 
probability distribution over the set of possible poses of the 
robot. That the sensing does not suffice to localize 
unambiguously, in fact, better conveys the power – as well 
as the limitations – of particle filters in comparison with 
parametric ones such as the Kalman filter. On platforms 
with laser range finders Monte Carlo Localization tends to 
converge on the correct location so quickly that the 
underlying strengths – and assumptions – of the algorithm 
could be taken for granted. 
 
In order to visualize their algorithms’ processing, students 
used and improved a compact, Python-based GUI that 
plotted the robot’s, the particles’, and the obstacles’ poses 
in a global coordinate frame. Built atop the Pyro and, now, 
Myro set of Python resources (Blank et al. 2005), this 
visualizer provides a convenient interface for students to 
debug their localization routines. Figure 1 summarizes one 
team’s submission. 

 
Figure 1   Snapshots of the visualizer (left) and the physical 

Create (right) during monte carlo localization. The white dot at 
left represents the most probable location of the robot, with 

darker pose hypotheses indicating lower likelihoods. Note that the 
best estimate is very close to the robot's real position, even as the 

odometry, shown as the blue dot, veers far from the true path. 
 
Figure 1, shot in the kitchen area of one of our school’s 
dormitories, emphasizes how the Create’s accessibility 
extends beyond its low price of $150-$200 each with the 
power system and charger. Equally important, these robots 
are robust enough to be lent out to students during the 
semester: four teams brought them back to their rooms in 
order to develop there, instead of being tied to the labs on 
the academic side of our campus.  
 
What’s more, the Create’s expandability led to several 
more ambitious projects. One pair of student created a 
robot whose motion was controlled by a freely spinning 
hamster ball; a second team programmed a trio of follow-
the-leader Creates. A third group built a sketch-drawing 
robot, in which an off-board camera provided the 
localization accuracy that Create's odometry could not. The 
platform could then render human-specified strokes with a 
dry-erase marker on the hallway floors of our department. 
A small servo motor could deploy and lift the pen.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2   (Top left) A Create being controlled by a hamster ball 
positioned atop an inverted mouse. The large hamsterball 

replaced the mouse’s trackball surprisingly well, and by simply 
reading mouse coordinates (all done within Python), it was 
possible to create a hamster-controlled vehicle.  (Top right) 

Another team created a “graffitibot” that would render arbitrary 
images in dry-erase marker on the floors of the department.  

(Middle) The graffitibot used an off-board vision system and 
human-specified waypoints to determine its path. (Bottom) A 
third team created convoy behaviors and deployed them on a 
series of three Creates using the built-in infrared sensors and 
iRobot’s virtual walls  as IR emitters. The virtual wall on the 

center robot stands on a raised platform in order not to block the 
infrared receiver, which is located at the front of the platform. 
Nygaard 2007 has a complete description, along with video. 



 
Negatives: local sensing, nonlocal computation 
 
The Create has only local sensing built-in: two bump 
sensors, five cliff sensors, wheel encoders for odometry, 
and several measuring the system’s electrical state. In our 
opinion, this lack of reach into the off-board world stands 
as the platform's biggest drawback.  The "green box" 
offered by iRobot and known as the command module,  
provides a very small amount of computational capability, 
but does not extend the sensor reach per se beyond the 
perimeter of the platform.  
 
The two most accessible sensing modalities that can 
compensate for this limitation are (1) sonar range sensing 
and (2) vision.  Both require an on-board computer to 
collect and process the substantial streams of raw data 
involved. Other research groups have shown success in 
mounting special-purpose hardware to Creates for this 
purpose, e.g., the Gumstix computers advocated by USC's 
Interaction Lab (Mataric et al., 2007), the recently released 
recipe involving CMU's Qwerk board (Nourbakhsh et al., 
2007), or the compact formfactor that characterizes Brown 
University's SMURV platform (Lapping-Carr et al., 2008). 
In contrast, we have experimented with approaches that 
use existing laptop computers to serve this purpose.  
 
Figure 3 depicts two such COTS-laptop designs that we 
have publicly demonstrated. The top image shows a Create 
which uses vision to autonomously follow its sibling, an 
iRobot Roomba Red, as exhibited at AAAI 2007. The 
bottom image adds panning sonar sensors to the previous 
vision-only system. The robot shown competed at the 
Tapia Robotics Competition in Orlando, Florida in 
October, 2007. 
 

 
Figure 3a The Create chasing a Roomba Red based on color cues 
extracted from an onboard webcamera, exhibited at AAAI 2007 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3b Another design, revised from Figure 3a, using a closed 
laptop. Three sophomores used this platform as their entry to the 

Tapia's robotics competition in October, 2007.  
 
In our experience, this laptop-based approach offers both 
plusses and minuses. Its low cost (the laptops already 
exist), familiar programming environments, wireless 
capabilities, and the resulting ease in adding sensors argue 
for placing laptops on board. Yet owners are also rightfully 
concerned about entrusting their computer to the fortunes 
of a possibly erratically moving vehicle. Also, although 
certainly powerful enough, the Create is really too small to 
comfortably contain the large desktop-replacement 
machines that many people prefer in a portable computer 
today. A computer any larger than a small Mac PowerBook 
will extend beyond the boundary of the Create, preventing 
the bumper from sensing obstacles in at least some 
orientations of the platform. Aesthetically, too, we have 
reservations about the designs we have tested to date: 
overall, they don't "sit well" or "fit well," despite their 
advantages for sensor and student accessibility. 

PowerWheels for outdoor applications 
This sense that the Create was too small of a platform to 
comfortably support a laptop led us to explore an 
alternative scaffolding for accessible robotics: the Fisher 
Price PowerWheels toys. Designed for small children, 
these plastic vehicles come with a rechargeable battery and 
motors that support well over an hour of operation and can 
carry 40-50 pounds of external load without difficulty. A 
bit large for indoor use, these vehicles are an excellent 
option for accessible outdoor robotics. Indeed, our designs  
derive directly from Bob Avanzato's work at Penn State 
Abington, where an annual Mini Grand Challenge contest  
challenges such vehicles to autonomously navigate the 
university's campus paths (Avanzato 2007). 
 
To interact with motors and sensors, we have leveraged 
pair of well-supported microcontroller boards: the arduino 
and the brainstem. The process of altering the vehicle to 
run under laptop control requires less than an hour of 
student effort and approximately $100 in easily obtainable 
parts (Avanzato 2008). Figure four shows two of our 
vehicles. 
 
 
 



 
 
  
 
 
 
 
 
 
 

Figure 4   Two PowerWheels vehicles, adapted to run 
autonomously via an onboard laptop computer. Best suited for 

outdoor applications, these vehicles used vision, GPS, and sonar 
sensing in order to follow trails and navigate paths on campus. 

Leveraging OpenCV on Mac OS X 
Cameras for laptops are cheap and available sensors, but 
without software to interface with these webcams they can 
not help our robotics efforts.  OpenCV, an open source 
computer vision library, provides the low level access to 
the hardware as well as providing higher level functionality 
in areas such as image processing and object recognition. 
Because OpenCV's support for MacOS X was quite 
limited, as part of this project we sought to extend 
OpenCV to take advantage of the native development 
environment and libraries available to all Macs.  
 
This project began in order to free Open CV's Mac port 
from its many external dependencies, e.g. libjpeg, 
libtiff, ffmpeg, and several others. Indeed, the 
dependency on ffmpeg required a version older than the 
current release, which complicated the installation of the 
vision library.  We succeeded in freeing the system from 
those dependencies, relying instead on Mac OS's wealth of 
built-in support for image and video formats. In addition, a 
make option now allows users to create a Framework 
build of OpenCV, Macs' native format for building 
software that can be installed via drag-and-drop. The 
resulting library retains the wealth of computer vision 
algorithms for which OpenCV is known, but now in a 
package that helps preserve the sanity of users whose 
operating system is Mac OS X. The new system has been 
folded into the Sourceforge repository (OpenCV, 2007). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5  Color tracking – and mistracking – using OpenCV.  

 
As examples of the visual processing that has leveraged 
OpenCV, one PowerWheels vehicle was programmed to 
approach and follow yellow objects: this successfully 
tracked our beachball both indoors and out, but 
occasionally got distracted, e.g., by an unusually bright 
pair of  tennis shoes (Figure 6). Another application took 
advantage of the morphological operators OpenCV 
implements in order to support subtasks of the Mini Grand 
Challenge: finding cones, segmenting road, and mapping 
the environment.  
 
We briefly consider each subtask here: 
 
To find cones, we first mask the input image using a cone 
color filter as described above. Once the image has been 
masked, we find connected components of marked pixels. 
We then decide that any component that is large enough 
must be a cone. This removes noise but does not account 
for other cone-colored objects in the image. Once the 
connected components representing cones have been 
found, we calculate the center and determine that to be the 
center of the cone in the image. This position will later be 
transformed and placed on our map. 
 
Recognizing road by color is made difficult by the fact 
that roads are multi-colored and have a great deal of 
variation from pixel to pixel. We can account for things 
like light and shadow using the clusters in our color 
recognizer. To minimize the noise of pixel-to-pixel 
variations, we preprocess the image by applying a blur to 
the input image. This preprocessed image is then masked 
using the color filter. The masked image is then post-
processed by alternately blurring and thresholding the 
masked image. This both fills in missing pixels in large 
blocks of included pixels and eliminates noise. This image 
(called 'Painted image') is then transformed onto the x-z 
plane to be passed into our mapping system. 
 
The mapping system can determine the probable location 
of road with respect to our robot, given the results of the 
above processing steps. Specifically it transforms each 
pixel of the masked image down onto the x-y plane and 
then stores these values in a map image where each pixel 
corresponds with a box in space. Currently the mapping 
system simply returns this image so that it can be displayed 
as seen below in the top left corner of the screen shot. Note 
that this system is limited in so far as the "stretch" of the 
masked image produces the striations observed below. We 
plan on blurring the map image to eliminate those 
striations. Since we use brightness to indicate strength of 
knowledge this will result in those portions of the map 
simply having less weight. 
 
Figure 6 summarizes these processing steps with a 
screenshot of the visual pipeline employed. 
 



 
Figure 6  A screenshot of the OpenCV-based cone- and road-
finding software for our "Gator Jeep" PowerWheels platform. 

Color segmentation, morphological operators, region extraction 
and convolution are sequenced in order to stay on the path and 

away from obstacles (orange road-cones, in this case) 

Perspective and Continuing Work 
With iRobot's release of the Create and Bob Avanzato's 
pioneering work with PowerWheels vehicles, we have 
found that the distinction between educational platforms 
and research-ready platforms is rapidly fading. In both 
cases, the use of commercial, off-the-shelf computation in 
the form of students' laptop computers offers considerable 
advantages and flexibility: 
 
• In each case, the focus is software and computation, not 

hardware or assembly. Though we did spend a 
considerable time on the PowerWheels hardware, but 
with that hard-won experience, future development can 
focus on the computational facets of the field. 

 
• iRobot's platforms are rugged, familiar, and are suited to 

exploration within indoor, human-scale environments. 
 
• The PowerWheels platforms are similarly robust, but 

extend our students' reach to outdoor environments -- in 
particular, to the Mini Grand Challenge at Penn State 
Abington or the International Ground Vehicle 
Competition in Rochester, Michigan (IGVC, 2008). 

 
• Because they are peripheral to existing laptop 

computation, both platforms leverage the sensors and 
computation that our department -- and our students -- 
already have. 

 
• Both systems have low total cost: $250-300 for a well-

equipped iRobot system, and $450-500 for an 
autonomous PowerWheels platform.  

 
The addition of an accessible version of the powerful 
OpenCV vision library for Mac OS X further eases the 
learning curve for student involvement with robotics 
algorithms, development, and the broader robotics  

community. We look forward to working with other 
educators and researchers to continue to make AI robotics 
a welcoming field in which undergraduates can quickly get 
up to speed and begin to make contributions. It is this 
active engagement within the larger community, we 
believe, that provides the most lasting benefit both to new 
students and established AI practitioners alike.  

Acknowledgments 
The authors gratefully acknowledge support from National 
Science Foundation DUE CCLI #0411176 and funds 
provided by Harvey Mudd College. Steven Wyckoff 
(HMC '07) and Mike Roberts (HMC '08) provided the mini 
grand challenge subtask descriptions and software.  

References 
Avanzato, R. (2007) Mini Grand Challenge Contest for Robot 
Education. In Robots and Robot Venues: Resources for AI 
Education, AAAI Technical Report SS-07-09, pp. 7-9, AAAI 
Press. 
 
Avanzato, R. (2008) The Mini Grand Challenge website, 
www.ecsel.psu.edu/~avanzato/robots/contests/outdoor/ 
 
Blank, D.S., Kumar, D., Meeden, L., and Yanco, H. 2005) The 
Pyro toolkit for AI and robotics. AI Magzine. 27(1), pp. 39-50. 
 
IGVC (2008) http://www.igvc.org/ 
 
Lapping-Carr, M., Jenkins, O. C.,  Hinkle, T., Schwertfeger, J., 
and Grollman, D. Wiimote Interfaces for Lifelong Robot 
Learning. In Using AI to Motivate Greater Participation in 
Science, AAAI Technical Report SS-08-08, to appear, AAAI 
Press 
 
Mataric, M., Koenig, N., and Feil-Seifer, D. (2007) Materials for 
Enabling Hands-On Robotics and STEM Education. In Robots 
and Robot Venues: Resources for AI Education, AAAI Technical 
Report SS-07-09, pp. 99-102, AAAI Press. 
 
Nourbakhsh, I., Hamner, E., Lauwers, T., DiSalvo, C., Bernstein, 
D. TeRK: A Flexible Tool for Science and Technology 
Education. In Robots and Robot Venues: Resources for AI 
Education, AAAI Technical Report SS-07-09, pp. 117-122, 
AAAI Press. 
 
Nygaard, C., Pflueger, M., and Roberts, K. Multiple Coordinating 
Robots, at www.cs.hmc.edu/twiki/bin/view/Main/FinalReport (2007) 
 
OpenCV (2007) http://sourceforge.net/projects/opencvlibrary/ 
 
Thrun, S., Fox, D., Burgard, W. and F. Dellaert, 2001. Robust 
Monte Carlo Localization for Mobile Robots, Artificial 
Intelligence, 128(1-2): pp. 99-141. 


