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Abstract 
Coordinating a group of robots to work in formation has 
been suggested for a number of tasks, such as urban search-
and-rescue, traffic control, and harvesting solar energy. 
Algorithms for controlling robot formations have been 
inspired by biological and organizational systems. In our 
approach to robot formation control, each robot is treated 
like a cell in a cellular automaton, where local interactions 
between robots result in a global organization. The 
algorithm has been demonstrated in both simulated (Mead 
& Weinberg 2006) and physical environments (Mead et al. 
2007). In this paper, we present a detailed insight into the 
algorithm and its implementation. 

Introduction 

Robots organizing and working in formation has been 
suggested for a number of tasks, such as systematic search-
and-rescue (Tejada et al. 2003), automated traffic cones for 
road construction (Farritor & Goddard 2004), and 
construction of a large orbiting solar reflector for 
harvesting solar energy (Bekey et al. 2000). Work on 
formations has been inspired by biological and 
organizational systems, such as the flying patterns of geese 
or marching bands (Fredslund & Mataric 2002, Balch & 
Arkin 1998). 

Formation Definition 

Our approach is to treat the formation as a type of 
cellular automaton, where each robotic unit is a cell (Mead 
& Weinberg 2006). The robot’s behavior is governed by a 
set of rules for changing its state with respect to its 
neighbors. By selecting one of the robots as an “initiator”, 
human intervention would change its state, which would 
propagate to its neighbors, instigating a chain reaction. 

Each robot is represented as a cell ci in a 1-dimensional 
cellular automaton, where i refers to the index within the 
automaton; note that an index is not necessarily the robot’s 
identification number or address that is used for 

communication—it is simply a reference. 
Each cell is in a neighborhood, denoted {ci-1, ci, ci+1} or 

{ ci-1, ci, ci+1}, where ci-1 and ci+1 refer to the left and right 
neighbors of ci, respectively. Likewise, a particular 
neighbor is denoted cj, where j is the index of the cell 
representing a neighboring robot. It follows that, by 
combining neighborhoods, the entire automaton can be 
written as {…, ci-2, ci-1, ci, ci+1, ci+2, …}. 

A desired formation F is defined as a geometric 
description (in the current implementation, a single 
mathematical function) f(x). This definition is sent to some 
robot, designating it as the seed cell cseed of the automaton. 
For purposes of determining relationships, a cell considers 
itself to be at some function-relative position pi: 

 
 pi ← ‹xi, f(xi)› (1) 
 
In the case of cseed, the position pseed is given and serves 

as a starting point from which the formation and 
relationships will propagate. 

The desired relationships between cells (robot) are 
determined by calculating a vector v from pi to the 
intersection of f(vx) and a circle centered at pi with radius 
R, where R is the desired distance to maintain between 
neighbors in the formation: 

 

 R2 ← (vx - pi,x)
2 + (f(vx) - pi,y)

2 
r i→j,des ← ‹vx, f(vx)› 

(2) 
(3) 

 
Solving for the desired relationship vector r i→j,des to 

some neighbor cj results in two intersections: one in the 
positive direction and one in the negative direction. These 
solutions define right and left neighbor relationships 
r i→i+1,des and r i→i-1,des, respectively (Figure 1). 

The formation definition and relationship information 
are communicated locally within the neighborhood. 
Neighboring robots repeat the process, but consider 
themselves to be at different function-relative positions as 
determined by the desired relationship from their neighbor. 
For a neighbor cj: 

 

 pj ← pi + r i→j,des 

r j→i,des ← -r i→j,des 
(4) 
(5) 



Note that relationships r j→i,des and r i→j,des are equal in 
magnitude, but opposite in direction. This property of the 
algorithm is what guarantees convergence and stability 
between two robots attempting to establish and maintain 
relationships with one another. 
 

 
Figure 1: ci calculates the desired relationship to its 

neighbors. 
 

Using only sensor readings, robots calculate an actual 
relationship r i→j,act with a neighbor cj. The robot 
communicates locally (i.e., within the neighborhood) 
discrepancies in its desired and actual relationships to 
neighboring cells. Correcting for these discrepancies 
produces robot movements that result the overall 
organization of the desired global structure (Figure 2). 

 

 
Figure 2: Calculated relationships between robots 

generate a parabolic formation. 
 
An inherent aspect of the algorithm is that a movement 

command sent to a single robot will cause a chain reaction 
in neighboring robots, which then change states 
accordingly, resulting in a global transformation. Likewise, 
to change a formation, a seed cell is chosen and given the 
new geometric description and the process is repeated 
(Figure 3). 

 

 
Figure 3: A new formation is given that describes a line. 

Motion Control  

By evaluating the state of the neighborhood, ci is able to 
determine the translational error Γi and rotational error Θi 
that will define its movement, which is assumed to be 
along a safe trajectory. To do this, the robot must first seek 
a point of reference. Recall that the seed cell cseed was 
given an initial function-relative position pseed, from which 
the formation and relationships propagate. As the distance 
from cseed increases, the propagated error accumulates. It 
follows that the neighbor of ci whose function-relative 
position is closest to pseed will have the least amount of 
propagated error within the system and, thus, will likely be 
the most reliable robot to reference. This reference 
neighbor ck is then the neighbor that yields the minimum 
distance ||pk’ || from pseed to pk: 

 
 pk' ← min{||pi-1 - pseed||, ||pi+1 - pseed||} (6) 
 
The rotational error Θi is a difference in robot 

orientation, which is propagated to each successive cell in 
the automaton. To determine Θi, ci considers rk→i,act with 
respect to itself. Let θi→k represent the relative angle 
between the headings of ci and ck, and let θi and θk be the 
angles of the relationship vectors r i→k,act and rk→i,act, 
respectively. Then: 

 

 θi→k ← θk – θi + 180°; [-180°, 180°] 
Θi ← Θk + θi→k; [-180°, 180°] 

(7) 
(8) 

 
Note that if θi→k = 0°, both i and k have the same global 

heading. The same holds true for every robot in the 
formation if Θi = 0° for all i. This property of the algorithm 
to yield an emergent global heading is essential for any 
subsequent formation commands from an operator. If a 
translational movement command is given, the common 
heading of the robots allows for a smooth transition in the 
same direction. 

The appropriate translational movement for each robot 
in the automaton is determined by an accumulation of error 
with both x- and y-components. This error is determined 
by the difference in desired and actual relationships of 
reference cell ck. One major consideration is that many of 
the robots are, themselves, correcting for translational and 
rotational errors while they are being referenced by other 
robots. Changes in the orientation of ck can cause rather 
entropic behavior in ci, which depends on it for motion 
control. To alleviate this problem, rk→i,des must be rotated, 
accounting for the propagated rotational error Θk within the 
automaton. Let rk→i,des’  denote rk→i,des rotated by an angle –
Θk. We express γi as the translational error of ci with 
respect to ck: 

 
 γi ← Γk + rk→i,des' – rk→i,act (9) 
 
Recall that θi→k relates the headings of both of these 

robots, providing a conversion between the relative 
coordinate systems of ci and ck. Thus, rotating γi by –θi→k 
yields the translational error Γi. 



Simulator 

The control algorithm was initially implemented in a 
simulated environment (Mead & Weinberg 2006). The 
simulator was written in C++ using OpenGL, and provides 
an easy means to visualize, manipulate, and test the 
algorithm. Recall that each robot is represented as a cell ci, 
where i is the corresponding index within the automaton; 
in the simulator; the automaton is stored as a 1-
dimensional array of n cells, where n is given at runtime. 
Tens-to-thousands of cells have been tested against various 
formation definitions to demonstrate the scalability and 
generality of the algorithm (Figure 4). 

 

 

 

Figure 4: Two robot formations in simulation. 
 
 

 
Figure 5: Cells change formation from a parabola to a sine 

curve (pictured in four steps in time). 
 

To show dynamic switching capabilities of the 
algorithm, a human operator can send a variety of 
commands to a seed cell, thus, propagating changes in 
automaton. A change formation command redefines the 
desired geometric figure (Figure 5). Translation commands 
move the cells along the current formation heading. 
Rotation commands instigate changes in orientation and 
come in two forms: formation rotation and cell rotation. A 
formation rotation command causes a change in the 
orientation of the formation as a whole, thus, requiring 
each cell to move in such a way as to maintain the shape as 
it is rotated. In contrast, a cell rotation command modifies 
the orientation of each cell relative to the formation; the 
position and orientation of the formation itself remain 
unchanged. In addition, an operator may directly 
manipulate any cell, relocating or reorienting it to evaluate 
the stability of the system in the presence of error. 

The simulator assumes perfect, continuous, and 
unlimited sensing. The next section discusses the physical 
implementation of this algorithm and how we overcame 
this assumption to prove that the approach is viable in the 
real world. 

Robot Platform & Implementation  

 A platform was developed to test the algorithm in the 
physical world (Mead et al. 2007; Figure 6). Each robot is 
built upon a Scooterbot II base (www.budgetrobotics.com). 
The Scooterbot is 7 inches in diameter and is crafted from 
expanded PVC, making it durable and light. Two modified 
servo motors are employed for differential steering. 

 
Figure 6: The robot platform with XBC controller. 

 
The formation control algorithm is implemented in 

Interactive C (www.kipr.org/ic) and runs on an XBCv2 
microcontroller (www.botball.org). The XBC utilizes 
back-EMF PID for accurate motor control. It also features 
a camera, capable of multi-color, multi-blob simultaneous 
tracking. Rotating the robot provides a 360° view of the 
environment and neighboring robots. 

F ← f(x) = -½ |x| 

F ← f(x) = x2 



Neighbor Localization 
 A neighboring robot represented by cj is identified by 
either an orange or green color band; the color of each 
robot is assigned based on its ID: green for even; orange 
for odd. The alternating of color bands reduces the chances 
of overlapping color blobs and improves the accuracy of 
detecting a neighbor. 

To locate cj, a robot represented by ci rotates until the 
band of the appropriate color is within its view; it then 
centers on that band. The heading of ci is always 
considered to be directed at the x-axis (0°); relative to the 
robot, left yields positive angles and right yields negative 
angles. The distance di→j between ci and cj is determined by 
recognizing that the perceived vertical displacement ∆y 
between the top and bottom of a color band is proportional 
to the perceived vertical displacement ∆Y at a known 
physical distance D (Figure 7): 

 

 di→j ← D × ∆Y / ∆y (10) 
 

 
Figure 7: ci identifies and determines its distance to cj. 

 
 The relative orientation αi→j from ci to cj is simply the 
angular displacement from the initial location (i.e., prior to 
the search) of ci. Thus, the actual relationship vector ri→j,act 
is written in polar coordinates as: 
 

 r i→j,act ← ‹di→j, αi→j› (11) 

Communication 
A radio communication module is used to share state 

information within a robot’s neighborhood. The XBee 
(ZigBee/IEEE 802.15.4 compliant) was chosen for its rich 
feature set, transparent operation, and high level API 
[www.maxstream.net]. The ZigBee protocol does not 
require a host/slave configuration like many similar 
technologies, allowing for more flexibility in networking 
topologies such as mesh networking, broadcast mode, and 
packet rerouting. The XBee also scales well for large 
applications, using 16-bit addressing to provide for over 
65,000 nodes. The low-power model, which we utilized, 
offers a range of 100 meters, which is equivalent to class-2 
Bluetooth, while the XBee Pro variation would allow us to 
transmit over a range of one mile without any changes to 
hardware or software. 

 

 

To use the XBee chips with our XBC microcontrollers 
several design considerations had to be taken into account. 
The XBee communicates uses a TTL-level UART, while 
the XBC uses RS-232 levels. Also, the foot print of the 
XBee requires interfacing to the serial port on the XBC. To 
accommodate for the RS-232 levels, a level translation 
circuit was designed (Figure 8) using a MAX 3221 
Transceiver (www.maxim-ic.com). Ten pin single row 
headers with 2mm spacing matched the XBee so that it 
could plug into this interface board. The schematic was 
used to generate a printed circuit board layout as seen in 
Figure 8. All parts were surface mounted, with the 
exception of a 9-pin D-Sub male plug that sat on the XBC. 
The result is a board smaller than the XBee itself that 
directly plugs into the XBC’s 9-pin serial port (Figure 9). 

 

 
 

 
Figure 8: Level translation circuit (top) and the top layer 

of the PCB interface board (bottom). 



 
 

Figure 9: XBee wireless communication module. 
 
A reliable packet communication protocol was 

implemented that supports automatic retries and 
acknowledgements. Packets can be addressed to a 
particular robot or broadcast. This allows each robot to 
communicate locally within its neighborhood. 

Evaluation 
 The formation control algorithm is implemented on a 
modest number of robots (Figure 10). We are currently 
working on a series of experiments that will be conducted 
and evaluated based on the criteria discussed in Fredslund 
& Mataric (2002). 

Figure 10: Eleven robots in a parabolic formation defined 
by the geometric description F ← f(x) = x2. 

Future Work 

If the robots are not initially put in a formation, then a 
neighborhood must be established dynamically. This will 
be accomplished by implementing a market-based 
auctioning method, where a robot is chosen to be a 
neighbor based on its distance to the desired relative 
location in the formation description. For this to be 
implemented, a robot must be able to identify and track its 
neighbors. This is easier said than done, as each unit looks 
identical. We alleviated these problems by utilizing a 
colored bar-coding system (Figure 11). Each robot features 
a three-color column; the unique vertical location of the ID 
color bar (in relation to the start and stop color bars) is 
proportional to the identification number of the robot. 
Similarly, the perceived distance between the start and stop 
color bars of a robot is proportional to the actual distance 
to that robot. 

 
 

 
Figure 10: Color bar-coding system (left) implemented on 

a robot prototype (right). 
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