
Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A Demonstration of a Robot Formation Control Algorithm and Platform

Ross Mead*, Jerry B. Weinberg*, and Jeffrey R. Croxell†

Southern Illinois University Edwardsville
*Department of Computer Science

†
Department of Electrical and Computer Engineering

Edwardsville, IL 62026-1656
qbitai@gmail.com, jweinbe@siue.edu, jcroxel@siue.edu

Abstract
Coordinating a group of robots to work in formation has
been suggested for a number of tasks, such as urban search-
and-rescue, traffic control, and harvesting solar energy.
Algorithms for controlling robot formations have been
inspired by biological and organizational systems. In our
approach to robot formation control, each robot is treated
like a cell in a cellular automaton, where local interactions
between robots result in a global organization. The
algorithm has been demonstrated in both simulated (Mead
& Weinberg 2006) and physical environments (Mead et al.
2007). In this paper, we present a detailed insight into the
algorithm and its implementation.

Introduction

Robots organizing and working in formation has been
suggested for a number of tasks, such as systematic search-
and-rescue (Tejada et al. 2003), automated traffic cones for
road construction (Farritor & Goddard 2004), and
construction of a large orbiting solar reflector for
harvesting solar energy (Bekey et al. 2000). Work on
formations has been inspired by biological and
organizational systems, such as the flying patterns of geese
or marching bands (Fredslund & Mataric 2002, Balch &
Arkin 1998).

Formation Definition

Our approach is to treat the formation as a type of
cellular automaton, where each robotic unit is a cell (Mead
& Weinberg 2006). The robot’s behavior is governed by a
set of rules for changing its state with respect to its
neighbors. By selecting one of the robots as an “initiator”,
human intervention would change its state, which would
propagate to its neighbors, instigating a chain reaction.

Each robot is represented as a cell ci in a 1-dimensional
cellular automaton, where i refers to the index within the
automaton; note that an index is not necessarily the robot’s
identification number or address that is used for

communication—it is simply a reference.
Each cell is in a neighborhood, denoted {ci-1, ci, ci+1} or

{ ci-1, ci, ci+1}, where ci-1 and ci+1 refer to the left and right
neighbors of ci, respectively. Likewise, a particular
neighbor is denoted cj, where j is the index of the cell
representing a neighboring robot. It follows that, by
combining neighborhoods, the entire automaton can be
written as {…, ci-2, ci-1, ci, ci+1, ci+2, …}.

A desired formation F is defined as a geometric
description (in the current implementation, a single
mathematical function) f(x). This definition is sent to some
robot, designating it as the seed cell cseed of the automaton.
For purposes of determining relationships, a cell considers
itself to be at some function-relative position pi:

 pi ← ‹xi, f(xi)› (1)

In the case of cseed, the position pseed is given and serves

as a starting point from which the formation and
relationships will propagate.

The desired relationships between cells (robot) are
determined by calculating a vector v from pi to the
intersection of f(vx) and a circle centered at pi with radius
R, where R is the desired distance to maintain between
neighbors in the formation:

 R2 ← (vx - pi,x)
2 + (f(vx) - pi,y)

2
r i→j,des ← ‹vx, f(vx)›

(2)
(3)

Solving for the desired relationship vector r i→j,des to

some neighbor cj results in two intersections: one in the
positive direction and one in the negative direction. These
solutions define right and left neighbor relationships
r i→i+1,des and r i→i-1,des, respectively (Figure 1).

The formation definition and relationship information
are communicated locally within the neighborhood.
Neighboring robots repeat the process, but consider
themselves to be at different function-relative positions as
determined by the desired relationship from their neighbor.
For a neighbor cj:

 pj ← pi + r i→j,des

r j→i,des ← -r i→j,des
(4)
(5)

Note that relationships r j→i,des and r i→j,des are equal in
magnitude, but opposite in direction. This property of the
algorithm is what guarantees convergence and stability
between two robots attempting to establish and maintain
relationships with one another.

Figure 1: ci calculates the desired relationship to its

neighbors.

Using only sensor readings, robots calculate an actual
relationship r i→j,act with a neighbor cj. The robot
communicates locally (i.e., within the neighborhood)
discrepancies in its desired and actual relationships to
neighboring cells. Correcting for these discrepancies
produces robot movements that result the overall
organization of the desired global structure (Figure 2).

Figure 2: Calculated relationships between robots

generate a parabolic formation.

An inherent aspect of the algorithm is that a movement

command sent to a single robot will cause a chain reaction
in neighboring robots, which then change states
accordingly, resulting in a global transformation. Likewise,
to change a formation, a seed cell is chosen and given the
new geometric description and the process is repeated
(Figure 3).

Figure 3: A new formation is given that describes a line.

Motion Control

By evaluating the state of the neighborhood, ci is able to
determine the translational error Γi and rotational error Θi
that will define its movement, which is assumed to be
along a safe trajectory. To do this, the robot must first seek
a point of reference. Recall that the seed cell cseed was
given an initial function-relative position pseed, from which
the formation and relationships propagate. As the distance
from cseed increases, the propagated error accumulates. It
follows that the neighbor of ci whose function-relative
position is closest to pseed will have the least amount of
propagated error within the system and, thus, will likely be
the most reliable robot to reference. This reference
neighbor ck is then the neighbor that yields the minimum
distance ||pk’ || from pseed to pk:

 pk' ← min{||pi-1 - pseed||, ||pi+1 - pseed||} (6)

The rotational error Θi is a difference in robot

orientation, which is propagated to each successive cell in
the automaton. To determine Θi, ci considers rk→i,act with
respect to itself. Let θi→k represent the relative angle
between the headings of ci and ck, and let θi and θk be the
angles of the relationship vectors r i→k,act and rk→i,act,
respectively. Then:

 θi→k ← θk – θi + 180°; [-180°, 180°]
Θi ← Θk + θi→k; [-180°, 180°]

(7)
(8)

Note that if θi→k = 0°, both i and k have the same global

heading. The same holds true for every robot in the
formation if Θi = 0° for all i. This property of the algorithm
to yield an emergent global heading is essential for any
subsequent formation commands from an operator. If a
translational movement command is given, the common
heading of the robots allows for a smooth transition in the
same direction.

The appropriate translational movement for each robot
in the automaton is determined by an accumulation of error
with both x- and y-components. This error is determined
by the difference in desired and actual relationships of
reference cell ck. One major consideration is that many of
the robots are, themselves, correcting for translational and
rotational errors while they are being referenced by other
robots. Changes in the orientation of ck can cause rather
entropic behavior in ci, which depends on it for motion
control. To alleviate this problem, rk→i,des must be rotated,
accounting for the propagated rotational error Θk within the
automaton. Let rk→i,des’ denote rk→i,des rotated by an angle –
Θk. We express γi as the translational error of ci with
respect to ck:

 γi ← Γk + rk→i,des' – rk→i,act (9)

Recall that θi→k relates the headings of both of these

robots, providing a conversion between the relative
coordinate systems of ci and ck. Thus, rotating γi by –θi→k
yields the translational error Γi.

Simulator

The control algorithm was initially implemented in a
simulated environment (Mead & Weinberg 2006). The
simulator was written in C++ using OpenGL, and provides
an easy means to visualize, manipulate, and test the
algorithm. Recall that each robot is represented as a cell ci,
where i is the corresponding index within the automaton;
in the simulator; the automaton is stored as a 1-
dimensional array of n cells, where n is given at runtime.
Tens-to-thousands of cells have been tested against various
formation definitions to demonstrate the scalability and
generality of the algorithm (Figure 4).

Figure 4: Two robot formations in simulation.

Figure 5: Cells change formation from a parabola to a sine

curve (pictured in four steps in time).

To show dynamic switching capabilities of the
algorithm, a human operator can send a variety of
commands to a seed cell, thus, propagating changes in
automaton. A change formation command redefines the
desired geometric figure (Figure 5). Translation commands
move the cells along the current formation heading.
Rotation commands instigate changes in orientation and
come in two forms: formation rotation and cell rotation. A
formation rotation command causes a change in the
orientation of the formation as a whole, thus, requiring
each cell to move in such a way as to maintain the shape as
it is rotated. In contrast, a cell rotation command modifies
the orientation of each cell relative to the formation; the
position and orientation of the formation itself remain
unchanged. In addition, an operator may directly
manipulate any cell, relocating or reorienting it to evaluate
the stability of the system in the presence of error.

The simulator assumes perfect, continuous, and
unlimited sensing. The next section discusses the physical
implementation of this algorithm and how we overcame
this assumption to prove that the approach is viable in the
real world.

Robot Platform & Implementation

 A platform was developed to test the algorithm in the
physical world (Mead et al. 2007; Figure 6). Each robot is
built upon a Scooterbot II base (www.budgetrobotics.com).
The Scooterbot is 7 inches in diameter and is crafted from
expanded PVC, making it durable and light. Two modified
servo motors are employed for differential steering.

Figure 6: The robot platform with XBC controller.

The formation control algorithm is implemented in

Interactive C (www.kipr.org/ic) and runs on an XBCv2
microcontroller (www.botball.org). The XBC utilizes
back-EMF PID for accurate motor control. It also features
a camera, capable of multi-color, multi-blob simultaneous
tracking. Rotating the robot provides a 360° view of the
environment and neighboring robots.

F ← f(x) = -½ |x|

F ← f(x) = x2

Neighbor Localization
 A neighboring robot represented by cj is identified by
either an orange or green color band; the color of each
robot is assigned based on its ID: green for even; orange
for odd. The alternating of color bands reduces the chances
of overlapping color blobs and improves the accuracy of
detecting a neighbor.

To locate cj, a robot represented by ci rotates until the
band of the appropriate color is within its view; it then
centers on that band. The heading of ci is always
considered to be directed at the x-axis (0°); relative to the
robot, left yields positive angles and right yields negative
angles. The distance di→j between ci and cj is determined by
recognizing that the perceived vertical displacement ∆y
between the top and bottom of a color band is proportional
to the perceived vertical displacement ∆Y at a known
physical distance D (Figure 7):

 di→j ← D × ∆Y / ∆y (10)

Figure 7: ci identifies and determines its distance to cj.

 The relative orientation αi→j from ci to cj is simply the
angular displacement from the initial location (i.e., prior to
the search) of ci. Thus, the actual relationship vector ri→j,act
is written in polar coordinates as:

 r i→j,act ← ‹di→j, αi→j› (11)

Communication
A radio communication module is used to share state

information within a robot’s neighborhood. The XBee
(ZigBee/IEEE 802.15.4 compliant) was chosen for its rich
feature set, transparent operation, and high level API
[www.maxstream.net]. The ZigBee protocol does not
require a host/slave configuration like many similar
technologies, allowing for more flexibility in networking
topologies such as mesh networking, broadcast mode, and
packet rerouting. The XBee also scales well for large
applications, using 16-bit addressing to provide for over
65,000 nodes. The low-power model, which we utilized,
offers a range of 100 meters, which is equivalent to class-2
Bluetooth, while the XBee Pro variation would allow us to
transmit over a range of one mile without any changes to
hardware or software.

To use the XBee chips with our XBC microcontrollers
several design considerations had to be taken into account.
The XBee communicates uses a TTL-level UART, while
the XBC uses RS-232 levels. Also, the foot print of the
XBee requires interfacing to the serial port on the XBC. To
accommodate for the RS-232 levels, a level translation
circuit was designed (Figure 8) using a MAX 3221
Transceiver (www.maxim-ic.com). Ten pin single row
headers with 2mm spacing matched the XBee so that it
could plug into this interface board. The schematic was
used to generate a printed circuit board layout as seen in
Figure 8. All parts were surface mounted, with the
exception of a 9-pin D-Sub male plug that sat on the XBC.
The result is a board smaller than the XBee itself that
directly plugs into the XBC’s 9-pin serial port (Figure 9).

Figure 8: Level translation circuit (top) and the top layer

of the PCB interface board (bottom).

Figure 9: XBee wireless communication module.

A reliable packet communication protocol was

implemented that supports automatic retries and
acknowledgements. Packets can be addressed to a
particular robot or broadcast. This allows each robot to
communicate locally within its neighborhood.

Evaluation
 The formation control algorithm is implemented on a
modest number of robots (Figure 10). We are currently
working on a series of experiments that will be conducted
and evaluated based on the criteria discussed in Fredslund
& Mataric (2002).

Figure 10: Eleven robots in a parabolic formation defined
by the geometric description F ← f(x) = x2.

Future Work

If the robots are not initially put in a formation, then a
neighborhood must be established dynamically. This will
be accomplished by implementing a market-based
auctioning method, where a robot is chosen to be a
neighbor based on its distance to the desired relative
location in the formation description. For this to be
implemented, a robot must be able to identify and track its
neighbors. This is easier said than done, as each unit looks
identical. We alleviated these problems by utilizing a
colored bar-coding system (Figure 11). Each robot features
a three-color column; the unique vertical location of the ID
color bar (in relation to the start and stop color bars) is
proportional to the identification number of the robot.
Similarly, the perceived distance between the start and stop
color bars of a robot is proportional to the actual distance
to that robot.

Figure 10: Color bar-coding system (left) implemented on

a robot prototype (right).

References

Balch, T. & Arkin R. 1998. “Behavior-based Formation Control
for Multi-robot Teams” IEEE Transactions on Robotics and
Automation, 14(6), pp. 926-939.

Bekey G., Bekey I., Criswell D., Friedman G., Greenwood D.,
Miller D., & Will P. 2000. “Final Report of the NSF-NASA
Workshop on Autonomous Construction and Manufacturing for
Space Electrical Power Systems”, 4-7 April, Arlington, Virginia.

Farritor, S.M. & Goddard, S. 2004. “Intelligent Highway Safety
Markers”, IEEE Intelligent Systems, 19(6), pp. 8-11.

Fredslund, J. & Mataric, M.J. 2002. “Robots in Formation Using
Local Information”, The 7th International Conference on
Intelligent Autonomous Systems, Marina del Rey, California.

Mead, R. & Weinberg, J.B. 2006. “Algorithms for Control and
Interaction of Large Formations of Robots”, in the Proceedings of
The 21st National Conference on Artificial Intelligence (AAAI-
06), Boston, Massachusetts, pp. 1891-1892.

Mead, R., Weinberg, J.B., & Croxell, J.R. 2007. “An
Implementation of Robot Formations using Local Interactions”,
in the Proceedings of The 22nd National Conference on Artificial
Intelligence (AAAI-07), Vancouver, BC, July 2007, pp. 1989-90.

Tejada, S., Cristina, A., Goodwyne, P., Normand, E., O’Hara, R.,
& Tarapore, S. 2003. “Virtual Synergy: A Human-Robot
Interface for Urban Search and Rescue”, in the Proceedings of the
AAAI 2003 Robot Competition, Acapulco, Mexico.

