
STAIR: Hardware and Software Architecture

Morgan Quigley and Eric Berger and Andrew Y. Ng
Computer Science Department

Stanford University
{mquigley, eberger, ang}@cs.stanford.edu

Abstract

The STanford Artificial Intelligence Robot (STAIR) project
is a long-term group effort aimed at producing a viable home
and office assistant robot. As a small concrete step towards
this goal, we showed a demonstration video at the 2007 AAAI
Mobile Robot Exhibition of the STAIR 1 robot responding to
a verbal command to fetch an item. Carrying out this task
involved the integration of multiple components, including
spoken dialog, navigation, computer visual object detection,
and robotic grasping. This paper describes the hardware and
software integration frameworks used to facilitate the devel-
opment of these components and to bring them together for
the demonstration.

Introduction
At the AAAI 2007 Mobile Robot Exhibition, we presented
videos of the STAIR robot performing a “fetch a stapler”
demonstration. In this paper, we describe the hardware and
software integration systems behind this demonstration. We
found that having a consistent software framework was criti-
cal to building a robotic system of the level of complexity of
STAIR, which incorporates components ranging from spo-
ken dialog to navigation to computer vision to robotic ma-
nipulation. In this paper, we describe some of our design
decisions, as well as lessons learned in building such a sys-
tem. We also describe the specific technical details of apply-
ing these ideas to having the robot fetch items in response to
verbal requests.

Hardware Systems
The first two robots built by the STAIR project were named
simply STAIR 1 and STAIR 2. Each robot has a manipulator
arm on a mobile base, but the robots differ in many details.

STAIR 1
This robot, shown in Figure 1, was constructed using largely
off-the-shelf components. The robot is built atop a Segway
RMP-100. The robot arm is a Katana 6M-180, and has a
parallel plate gripper at the end of a position-controlled arm
that has 5 degrees of freedom. Sensors used in the demon-
strations described in this paper include a stereo camera, a

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The STAIR 1 robot

SICK laser scanner, and a pan-tilt-zoom (PTZ) camera. A
second SICK laser scanner was mounted on top of the robot
on a panning motor, so as to obtain 3d point clouds of ob-
jects in front of the robot.

Most of the sensors were mounted on an aluminum frame
bolted to the table of the Segway base.1 We did not use
the self-balancing capabilities of the Segway. Instead, we
constructed an additional aluminum frame which added a
wheel to the front and a wheel to the back of the robot, so
that it became statically stable. This was done as a practical

1The aluminum frame was built out of parts made by 80/20 Inc.
The other sensors used were a Bumblebee stereo camera, a Sony
EVI-D100 PTZ camera, and a SICK LMS-291 laser scanner. A
second SICK LMS-200 laser scanner was mounted on top of the
robot, on a AMTEC PowerCube module.



Figure 2: The STAIR 2 robot

measure to avoid damage in the event of an emergency stop,
at the cost of increasing the footprint of the robot by a few
inches.

The robot is powered by a deep-cycle 12-volt battery feed-
ing an array of DC-DC converters, which produce the var-
ious DC voltages required by the robot’s subsystems. An
onboard automatic battery charger allows the 12-volt power
rail to function as an uninterruptable power supply (UPS),
which allows the robot’s computers and sensors to remain
running as AC power is removed for mobile experiments.
The power system allows for approximately two hours of
runtime at typical loads.

Onboard computation is provided by a Pentium-M ma-
chine running Linux and a Pentium-4 machine running Win-
dows. These machines are connected via an onboard ether-
net switch and, via an 802.11g wireless bridge, to worksta-
tions throughout the building.

STAIR 2
The STAIR 2 platform is shown in Figure 2. The wheeled
base (comprising the bottom 10 inches of the robot) was de-
signed and constructed by Reuben Brewer of the Stanford
Biorobotics Laboratory. This base has four steerable turrets,
each of which contain two independently-driven wheels. As
a result, the platform can holonomically translate in any di-
rection, turn in place, or translate and rotate simultaneously.
Desired motions in the robot’s coordinate system are trans-
lated by a dedicated XScale processor (on a Gumstix Verdex
board) into motor commands.

This platform uses a Barrett WAM arm, which is mounted
on an aluminum frame built on top of the wheeled base. The
WAM arm is a force-controlled arm with seven degrees of
freedom, and also integrates a 3-fingered hand. We used a

dedicated onboard Linux PC to control the arm. The robot
also has a Bumblebee2 stereo camera, and additional on-
board computation is provided by a second Linux machine.

The power and networking systems are similar to STAIR
1: an ethernet switch connects the onboard computers, and
a 802.11g wireless bridge provides connectivity with the
(much greater) computational resources offboard the robot.

Software Systems
A significant part of our effort on STAIR involved design-
ing and implementing a framework to support robot soft-
ware development, so as to enable applications such as the
“fetch a stapler” demonstrations. Many other researchers
have worked in this area, producing notable robotics frame-
works such as Player/Stage (Gerkey, Vaughan, & Howard
2003), CARMEN (Montemerlo, Roy, & Thrun 2003),
MCA (Scholl, Albiez, & Gassmann 2001), Tekkotsu (Tira-
Thompson 2004), Microsoft Robotics studio, and many oth-
ers.2 After investigating these existing frameworks, we de-
termined that our platform and goals differed sufficiently
from those of the designers of other frameworks that imple-
menting a purpose-built framework would be worthwhile.

Requirements
Parallel Processing Our application runs a single, large,
highly capable robot, and requires carrying out a consider-
able amount of computation. Our software has both hard-
and soft-real-time constraints, and also carries out longer-
running planning and scene analysis tasks. The onboard
computational resources of the robot cannot support all the
required computation, so we must spread the computational
load across offboard machines as well.

Modularity Because the STAIR project involves dozens
of researchers contributing to a sizable code base, it is
important to enforce modularity between software compo-
nents, so that components can be debugged and verified in
isolation as much as possible.

Cross-Platform Most of our available computational re-
sources are in the form of Linux workstations and server
racks. However, a few of the robot’s sensors came with
only binary Windows drivers. Therefore, our system must
run both Linux and Windows operating systems, and cross-
platform communication is required.

Robot-independent Because we are running two robots
which have completely different hardware, the software
must be as robot-independent as possible. Some software
modules function as device drivers and thus are tied to hard-
ware. However, as many software modules as possible
should operate only on hardware-independent abstractions,
to limit the size and complexity of the code base.

2The web pages of these frameworks are:
Player/Stage: http://playerstage.sourceforge.net
CARMEN: http://carmen.sourceforge.net
MCA2: http://www.mca2.org
Tekkotsu: http://www.cs.cmu.edu/˜tekkotsu
Microsoft Robotics studio: http://msdn.microsoft.com/robotics/



Code Aesthetics As with any large software project, keep-
ing code clean and streamlined makes research progress on
the robot significantly easier.

Design Choices
To meet the aforementioned requirements, we built a li-
brary called Switchyard, which supports parallel processing
through message passing along a user-defined, task-specific
graph of connections between software modules.

Modularity is enforced through the operating system pro-
cess model: each software module executes as a process on
some CPU. The TCP protocol was chosen for message pass-
ing, because it is supported on all modern operating systems
and networking hardware. Its operation is essentially loss-
less, which leads to simpler parsers that do not have to han-
dle re-synchronization.

From an aesthetic standpoint, the library is in the form
of C++ classes which each module extends to provide the
required functionality. Networking, routing, and scheduling
code do not show up in the software modules, as they are
provided by superclasses. This allows most modules to have
very little boilerplate code.

These design choices are certainly debatable. Indeed, we
are currently designing another robotics software platform
which builds upon lessons learned from the current frame-
work. However, for completeness we will provide details of
Switchyard’s design and operation, as used in the demon-
stration videos shown at the AAAI 2007 Mobile Robot Ex-
hibition.

Message-Passing Topology
Switchyard sets up a “virtual cluster” of computers on top of
an existing cluster of networked machines. The term “virtual
cluster” is meant to indicate that a subset of machines on the
network will operate as a cohesive group during a run of the
robot.

Master Server One computer in the virtual cluster is cho-
sen to be the master server.

Importantly, the master server does not process all the
traffic flowing through the virtual cluster. This would pro-
duce a star network topology, which could be highly in-
efficient for networks with heterogeneous connections be-
tween machines. As a concrete example, consider a STAIR
robot with an onboard ethernet switch connecting several
machines on the robot, and a wireless bridge connecting
these machines to the building’s network, which in turn con-
sists of many ethernet switches connecting many more ma-
chines. Throughput between machines on either side of the
wireless link is excellent, but throughput across the wire-
less link is often slow and variable-speed as the robot moves
through the building. The master server must reside on one
side of the wireless link, and if it were to process all data, the
wireless link would grind throughput to a halt across the en-
tire virtual cluster, particularly if there are data-heavy flows
on the subnets on each side of the wireless link.

The master server, then, is only present to automate the
startup and shutdown of the virtual cluster. Data payloads
sent between software modules flow on peer-to-peer TCP

connections. On startup, the master server loads an XML
description of the desired connection graph (the topology of
the “virtual cluster”) and automates its creation, as described
in the next paragraph.

Process Launcher A simple “process-launching” pro-
gram runs on every machine that is a part of the virtual
cluster. As command-line parameters, this program receives
the IP address of the master server and its “virtual machine
name” (which need not coincide with its IP host name).
Then, the process launcher connects to the master server, an-
nounces its name, and receives back a list of processes that
are to be launched.

This step is only for convenience; if a process needs to be
launched manually (for example, inside a debugger), it can
be excluded from the automatic-launch list.

Process Connection Switchyard processes are invoked
with the IP address of the master server, a “virtual name”
(which need not coincide with the executable filename), and
an available TCP port number on which to open a server.
Processes start a server on their assigned port, connect to the
master server, announce their name, and receive back a list
of other processes with which to establish peer-to-peer con-
nections. The processes then automatically connect to their
peers, and can start producing and consuming data.

Data flows Data flows in Switchyard are always unidirec-
tional and asynchronous with respect to any other modules.
The sender (or “upstream”) node sends chunks of data when-
ever it is ready. Each data flow can have any number of
receivers. Data always flows in chunks or “quanta” that
are meaningful to downstream nodes and cannot be sub-
divided logically. Some examples of “quanta” are images,
laser scans, maps, matrices, or waypoint lists.

Although each of these “quanta” could be divided into
smaller units (i.e. images and matrices could be divided into
rows or blocks), downstream nodes would likely have to re-
construct the original logical unit (e.g., image or matrix) be-
fore processing could begin. Thus, to reduce code size and
complexity in the receiving node, Switchyard only sends an
entire “quanta” at a time.

To save boilerplate code, the data flow model is written
as an abstract C++ class. This abstract superclass contains
all the networking and sequencing code required to transmit
byte blocks of arbitrary size. The superclass is derived to
create each type of data flow in the system. Data flows types
currently in use include:

• 2D, 3D, and 6D points

• 2D waypoint paths

• Particle clouds (for localization)

• Images and depth images

• Grid-world maps for navigation

• Arm (configuration-space) coordinates and paths

• Text strings

• Audio snippets

• Miscellaneous simple tokens (for sequencing)



Each subclass contains only the code necessary to seri-
alize its data to a byte stream and the code to deserialize
itself when presented with its byte stream. These methods
are implemented as C++ virtual functions, which allows the
higher-level scheduling code to invoke the serialize and de-
serialize methods without needing to know what is actually
being transmitted. This use of C++ polymorphism signifi-
cantly reduced the code size and complexity.

Since the computation graph runs asynchronously, when-
ever a process is ready to send data to its downstream peers,
it invokes a framework-provided function which does the
following:

1. The serialize virtual method in the data flow subclass fills
a buffer with its byte-stream representation.

2. The data flow subclass reports the length of the byte
stream representation of its quanta.

3. The byte-stream size is sent downstream via TCP.
4. The byte-stream itself is send downstream via TCP.

On the downstream side of a data flow, the framework
does the following:

1. The byte-stream size is received and adequate space is al-
located, if necessary, to receive it.

2. The byte-stream itself is received and buffered.
3. The deserialize virtual method in the data flow subclass

re-creates the data structures.
4. A virtual function is called to notify the receiving process

that the data structures are updated.

To avoid race conditions, each data flow has a mutex
which is automatically locked during the inflation and pro-
cessing of each data flow quanta. Thus, the data-processing
code does not need to be re-entrant, which can help simplify
its structure. The framework will silently drop incoming
quanta if the process has not finished handling the previous
quanta.

Data Flow Registration In the initialization of a Switch-
yard process, data flows must be instantiated and registered
with the framework. This is typically done with a single line
of C++ code (for each data flow) in the process constructor.

If the process will produce data on this flow, the follow-
ing actions are taken by the framework:

• The data flow name is copied into framework data struc-
tures which will route incoming TCP connections which
wish to subscribe to this flow.

• As other (receiving) processes connect to this (sending)
process, the socket handles are stored with the data flow
requested by the incoming connection.

• When this (sending) process wishes to send data on this
flow, the framework calls the “deflate” virtual method (as
described in the previous section), and sends the resulting
byte stream to any and all active TCP connections for this
flow.

If the process will receive data on this flow, the following
actions are taken by the framework:

Figure 3: Pan-tilt-zoom (PTZ) camera control graph

• A thread is spun off to handle the data flow.
• This thread attempts to connect via TCP with the process

that produces the data flow.
• Once connected, the thread announces the data flow it

wishes to receive.
• The thread parses the data stream and invokes user code

to process each incoming quanta, as discussed in the pre-
vious section.

By organizing the behavior in this manner, the entire peer-
to-peer connection scheme can be completed automatically
by the framework. This saves a great deal of repeated (and
bug-prone) networking and sequencing code in each pro-
cess.

Configuration Ports Many robotics software modules
have startup parameters. For example, a map server has ac-
cess to many map files, a laser scanner can be configured in
a variety of resolutions, and so on. Following the precedent
set in the Player/Stage framework, the graph XML file itself
can optionally contain startup parameters which, at runtime,
will override the default values hard-coded in each process.

Operation
To run an experiment or demonstration, the following steps
must occur:

Graph Design The machines available to run the experi-
ment must be described in the graph XML file, with either
their hostname or IP address. Next, the software processes
needed for the experiment or demonstration must be selected
or written. After listing the machines and processes, the con-
nections between the processes must be defined in XML.

As a concrete example, the following graph XML file
routes video from one computer to another and allow remote
pan-tilt-zoom (PTZ) control:
<graph>
<comp name="1">
<proc name="video_display">
<proc name="ptz_control">

</comp>
<comp name="2">
<proc name="ptz_camera">
<port name="compression_quality" value="40"/>

</proc>
</comp>
<conn from="1.ptz_control.ptz" to="2.ptz_camera.ptz">
<conn from="2.ptz_camera.frames" to="1.video_display.frames">

</graph>



Figure 4: Graph of the “fetch a stapler” demonstration. The large red text indicates the tasks performed by various regions; it is
not a functional part of the graph.

When this graph is run, it will cause two processes to start
up on computer 1, and one process to start on computer 2.
Once the processes are up, they will connect to each other
automatically and data will start flowing. A visualization
of this simple graph is shown in Figure 3. It allows com-
puter 1 (typically off the robot) to view the video stream and
command the camera to pan, tilt, and zoom. The camera de-
vice driver is running on computer 2 (typically on the robot)
and the video is transmitted across the network as individual
JPEG-compressed images.

The “fetch an item” demonstration involved a much larger
graph. As shown in Figure 4, this graph involves 21 pro-
cesses running on 3 machines, two onboard the robot and
one offboard. The modular software structure allowed the
(parallel) development of many of these modules in much
smaller, even trivial, graphs. Unit testing in this fashion re-
duced development time and helped to isolate bugs.

The asynchronous nature of this framework is also shown
in Figure 4. Cycles in this graph would create potential
deadlocks if the graph were to operate synchronously. To

keep things simple, the framework enforces no synchroniza-
tion: any and all synchronous behavior is implemented using
local state variables.

Framework Usage: “Fetch a Stapler”
This section will discuss how the software and hardware sys-
tems were used to perform the “fetch an item” demonstra-
tion. In this demonstration, a user verbally asks the robot to
fetch an item (a stapler). In response to this spoken com-
mand, the robot navigates to the area containing the item,
finds it using computer visual object detection, applies a
learned grasping strategy to pick up the object, and finally
navigates back to the user to deliver the item.

A video of this demonstration is available on the STAIR
project web site:
http://cs.stanford.edu/groups/stair

Figure 4 shows the detailed organization of the compo-
nents used in this demonstration. Computer 1 was an off-
board Linux machine, Computer 2 was an onboard Windows
machine, and Computer 3 was an onboard Linux machine.



(The number in parentheses after each process name indi-
cates what computer it was run on, and the edges in the graph
show the directions of TCP data flows.)

The processes used were subdivided roughly into five
main partitions (also shown in the figure), which were im-
plemented using Switchyard by about 4-5 largely disjoint
(but collaborating) teams of researchers.

Spoken Dialog We now describe STAIR’s spoken dia-
log system, specifically its implementation using Switch-
yard. (See also (Krsmanovic et al. 2006).) The au-
dio mic process continuously records audio, and streams it
to sphinx transcribe, which uses the CMU Sphinx speech-
recognition system to continuously recognize speech. When
the system recognizes a command, it passes the com-
mand to the central planner’s fetch item director process.
In the demonstration, STAIR’s verbal acknowledgment of
the command is then generated using the Festival speech-
synthesis system, by the tts festival process running onboard
the robot.

Navigation A navigation system enabling STAIR to nav-
igate in indoor environments and open doors is described
in (Petrovskaya & Ng 2007). For this demonstration, we
replaced portions of the software to increase its speed and
robustness to changing environments. Our implementation
used a Voronoi-based global planner and VFH+ (Ulrich &
Borenstein 1998) to avoid local obstacles. As shown in Fig-
ure 4, the navigation and localization module used different
processes to stream the laser readings, perform localization,
generate low-level commands to control the Segway base,
and so on. The processes with faster real-time requirements
were generally run onboard the robot (computer 3); the pro-
cesses running on longer time-scales, such as the Voronoi
planner, were run on a more powerful offboard machine
(computer 1).

Object detection (Gould et al. 2007) developed a foveal-
peripheral visual object detection system that uses a steer-
able pan-tilt-zoom (PTZ) camera to obtain high resolution
images of the object being recognized. Since object detec-
tion is significantly easier from high resolution images than
from low resolution ones, this significantly improves the ac-
curacy of the visual object detection algorithm. (Note that,
in contrast, obtaining high resolution, zoomed-in images this
way would not have been possible if we were performing ob-
ject detection on images downloaded off the internet.) In our
demonstration, a fast offboard machine (computer 1) was re-
sponsible for steering our robot’s PTZ camera to obtain high
resolution images of selected regions, and for running the
object recognition algorithm. An onboard machine (com-
puter 2) was used to run the low-level device drivers respon-
sible for steering the camera and for taking/streaming im-
ages. Our object recognition system was built using image
features described in (Serre, Wolf, & Poggio 2005).

Grasping To pick up the object, the robot used the grasp-
ing algorithm developed by (Saxena et al. 2006a; 2006b).
The robot uses a stereo camera to acquire an image of the ob-
ject to be grasped. Using the visual appearance of the object,

Figure 5: Robot grasping a stapler, using a learned grasping
strategy.

a learned classifier then selects a good “grasp point”—i.e., a
good 3d position at which to attempt to pick up the object.
The algorithm for choosing a grasp point was trained on a
large set of labeled natural and synthetic images of a variety
of household objects. Although this training set did not in-
clude staplers, the learned feature set was robust enough to
generalize to staplers. The low-level drivers for the camera
and the robot arm were run onboard the robot (computer 2);
the slower algorithm for finding a grasp point was run off-
board (computer 1). An example of the robot executing a
grasp of the stapler is shown in 5.

Conclusion
In this paper, we described the hardware and software sys-
tems that allowed the STAIR robot to perform the “fetch
a stapler” demonstration. The Switchyard software frame-
work provided a uniform set of conventions for communica-
tions across processes, and allowed different research teams
to write software in parallel for many different modules. Us-
ing Switchyard, these modules were then easy to execute si-
multaneously and in a distributed fashion across a small set
of onboard and offboard computers.

Acknowledgments
The STAIR project is a large group effort involving a large
team of researchers. For the “fetch an item” demonstration,
the object recognition system was developed in collabora-
tion with Steve Gould, Joakim Arfvidsson, Adrian Kaehler,



Ben Sapp, Marius Meissner, Gary Bradski, Paul Baum-
starck, Sung Chung; the grasping system was developed
in collaboration with Ashutosh Saxena, Justin Driemeyer,
Justin Kearns, and Chioma Osondu; the spoken dialog
system was developed in collaboration with Jeremy Hoff-
man, Filip Krsmanovic, Curtis Spencer, and Dan Juraf-
sky. We are also grateful to Quan Gan and Patrick Gal-
lagher for their help building the STAIR 2 platform. Many
others have contributed to the project’s hardware and/or
software, and are listed on the STAIR projects’ web site,
http://cs.stanford.edu/groups/stair. This work was supported
by the NSF under grant number CNS-0551737.

References
Gerkey, B.; Vaughan, R.; and Howard, A. 2003. The
Player/Stage Project: tools for multi-robot and distributed
sensor systems. In Internation Conference on Advanced
Robotics (ICAR).
Gould, S.; Arfvidsson, J.; Kaehler, A.; Sapp, B.; Meissner,
M.; Bradski, G.; Baumstarck, P.; Chung, S.; and Ng, A. Y.
2007. Peripheral-foveal vision for real-time object recogni-
tion and tracking in video. In Twentieth International Joint
Conference on Artificial Intelligence (IJCAI-07).
Krsmanovic, F.; Spencer, C.; Jurafsky, D.; and Ng, A. Y.
2006. Have we met? MDP based speaker ID for robust
dialog. In Ninth International Conference on Spoken Lan-
guage Processing (InterSpeech-ICSLP).
Montemerlo, M.; Roy, N.; and Thrun, S. 2003. Perspec-
tives on Standardization in Mobile Robot Programming:
The Carnegie Mellon Navigation (CARMEN) Toolkit. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).
Petrovskaya, A., and Ng, A. 2007. Probabilistic mobile
manipulation in dynamic environments, with application to
opening doors. In International Joint Conference on Arti-
ficial Intelligence (IJCAI).
Saxena, A.; Driemeyer, J.; Kearns, J.; and Ng, A. Y. 2006a.
Robotic grasping of novel objects. In Neural Information
Processing Systems (NIPS).
Saxena, A.; Driemeyer, J.; Kearns, J.; Osondu, C.; and
Ng, A. Y. 2006b. Learning to grasp novel objects us-
ing vision. In International Symposium on Experimental
Robotics (ISER).
Scholl, K.-U.; Albiez, J.; and Gassmann, B. 2001. MCA -
an expandable modular controller architecture. In 3rd Real-
Time Linux Workshop, Milan, Italy.
Serre, T.; Wolf, L.; and Poggio, T. 2005. Object recogni-
tion with features inspired by visual cortex. In IEEE Con-
ference on Computer Vision and Pattern Recognition.
Tira-Thompson, E. 2004. Tekkotsu: A Rapid Development
Framework for Robotics. Master’s Thesis, Carnegie Mel-
lon University.
Ulrich, I., and Borenstein, J. 1998. VFH+: reliable obstacle
avoidance for fast mobile robots. In IEEE International
Conference on Robotics and Automation (ICRA).


