Development of an Open Humanoid Robot Platform for Research and Autonomous Soccer Playing

Presenter: Karl Muecke Advisor: Dr. Dennis Hong

2007 AAAI Mobile Robot Workshop

Viminia

Tech

DARwIn Series

DARwin I

DARwin lia

DARwin lib

Virginia IIII Tech

Evolution of DARwIn

DARwin 0

<u>DARwin I</u>

DARwin lia

RoboCup—a soccer competition between autonomous robots

Robocup's goal is,

"by 2050, to develop a team of fully autonomous humanoid robots that can win against the human worldcup champion team in soccer."

- •2 v 2 soccer
- •Penalty kicks
- •Obstacle navigation
- •Dribbling
- Passing

Virginia IIII Tech

We were the only US team in RoboCup in the humanoid division

We have the most computing power among competitors

ROBOTICS & MECHANISMS LABORATORY

2 pan & tilt Firewire cameras Wireless network, serial ports, USB, compact flash, and an IMU **Onboard PC104+** computer All parts fabricated in-house Lithium polymer batteries Virgin

Mechanical design

Kinematically spherical and universal joints

Maximum stiffness and minimal weight in links

Tech

Electrical Design

Software design to include graphical user interface

Basic vision implementation using LabVIEW

IEEE 1394 camera collects uncompressed image

Original image

Software filters out everything not "orange"

Threshold image

...finds a circle

Ball recognition

Gait generation for DARwIn

- Pelvis/hip uses a cycloid function
- Ankle uses a cycloid function for the x-position
- Ankle uses a cosine function for the z position
- Lateral motion is relatively simple
- ZMP control for stability

Joint angles and trajectories visualized in OpenGL transfer to the robot

Collaboration towards next evolution of DARwIn

Visit to Korea to see KAIST's humanoid robot, Hubo

RoMe

ROBOTICS & MECHANISMS LABORATORY

DARwin III

Got a picture of future technologies and ideas

Foster collaboration with KAIST

Virginia III Tech

The next evolution of DARwIn

DARwIn III will be an open platform, available to the research community

DARWIN I DARWIN IIa DARWIN IIb

DARwin III

Virginia IIII Tech 13

Outtakes

