A hybrid Architecture for Function Approximation

HASSAB ELGAWI Osman

Computational Intelligence and Systems Science, Tokyo Institute of Technology-Japan
Email: osman@isl.titech.ac.jp

Abstract—This paper proposes a new approach to build a
value function estimation based on a combination of temporal-
different (TD) and on-line variant of Random Forest (RF). We
call this implementation Random-TD. First RF is induced into
on-line mode in order to deal with large state space and memory
constraints, while state-action mapping is based on the Bellman
error, or on the TD error. We evaluate the potential of the
proposed procedure in terms of a reduction in the Bellman error
with extended empirical studies on high-dimensional control
problems (Ailerons, Elevator, Kinematics, and Friedman), a
standard reinforcement learning benchmark on which several
linear function approximators have previously performed poorly.
The results demonstrate that a hybrid function approximation
(Random-TD) can significantly improve the performance of TD
methods.

Index Terms—reinforcement learning, function approximation,
TD-learning, random forests.

I. INTRODUCTION

ARGE applications of reinforcement learning (RL) re-

quire the use of generalizing function approximators (FA)
for finding an optimal policy for solving problems associated
with very large state spaces, partially observable states, and
non-stationary environments. Three distinct strategies have
been proposed to learn an optimal policy using reinforcement
information, 1) value-function approach', in which all function
approximation efforts goes into estimating a value function
and using that to compute a deterministic policy (“greedy”
policy), 2) a stochastic policy approximate directly using an
independent function approximator with its own parameters
and 3) policy gradient approach, the policy parameters are
updated approximately proportional to gradient: Af = a%,
where 6 denote the vector of policy parameters and p the
performance of corresponding policy and « is a positive
define step size. Good estimate of value function is highly
depending on engineering feature space to find features rep-
resent accurately the value of a policy. Towards this goal,
several studies have applied nearest neighbor, RBF and CMAC
function approximations, but these cannot scale to problems
with many features, especially if some features are irrele-
vant, even with careful engineering, continuous problems with
more than 10 dimensional remain daunting [9]. Comparing to
above mentioned approximators, decision-tree based ensemble
learning algorithms have the desirable property of having less
parameters to be tune and of their ability to deal with large
state space; hence, such algorithms are easier to use. Ensemble
decision tree methods such as bagging [3], boosting [6],

I'Three categories: Dynamic Programming (DP), Monte Carlo (MC) meth-
ods, and Temporal Difference (TD) methods (For example, Q-learning, Sarsa,
and Actor-Critic), according to the schemes for updating the value functions

Random Forests (RF) [4] and their invariants also generate
extra information that allow to estimate the importance of each
explanatory variable. e.g., based on permutation accuracy and
on impurity decrease, RF measures variable importance by
randomly permuting the values of the variable m for the out-
of-bag? (OOB) cases for tree k, if variable m is important in
the classification, then the accuracy of the prediction should
decrease. On the other hand, we can consider the accumulated
reduction at nodes according to the criteria used at the splits,
an idea from the original CART [5] formulation. However,
decision tree is always constructed in batch mode; the branch-
ing decision at each node of the tree is induced based on
the entire set of training data. On-line? algorithms, sometimes
prove to be more useful in the case of very large data sets, and
situation where memory is limited. In most of the decision tree
construction approaches and their applications [14], [15], the
decision tree is modeled for classification tasks. Decision trees
are employed for function approximation mostly in the context
of reinforcement learning for value function estimation [16]-
[18]. In this paper, we explore the potential of employing a
hybrid function approximator to represent the value function.
To this end a combination of RF and TD learning, both operate
on on-line mode is proposed. We call this implementation
Random-TD. The input space is divided into m different
regions and at each sub-space a local estimation is performed
in order to find a good feature matrix W. To our knowledge,
there have been no published results combining RF algorithm
and RL. A possible reason for this lack of algorithms is
that RF generally operates in batch mode, over a whole data
set, while RL algorithms typically use on-line training. Our
first aim was to extend the standard RF algorithm for on-
line classification and to improve the TD learning methods.
We partially succeeded in the first goal by using our recent
proposed on-line RF based on correlation raking to generate
new incremental feature space [7] and in the second by using
a combination of TD-learning and on-line RF. We provide
a motivation for this new approach in terms of a reduction
in the Bellman error. Moreover, the novelty of our approach
is its orientation towards the application of knowledge based
function approximation, as a result of aggregate supervisor
learning with TD learning. From this novel approach, we hope
to highlight some of the strengths of RF approach to the RL

2There is on average I /e = 36.8 of instances not taking part in construction
of the tree, provides a good estimate of the generalization error (without
having to do cross-validation).

3The distinction between on-line and off-line methods here refer to issues
of time reversal in the computation. On-line methods process incoming data
strictly in the order it is received, while off-line methods are therefore more
desirable for real-time learning applications

problems. The reader is advised not to view this paper as
supervised learning vs. RL discussion, so hybrid (aggregated)
approaches are advisable. We demonstrate the effectiveness
of Random-TD in approximating functions with extended
empirical studies on a high-dimensional control problems
(Ailerons, Elevator, Kinematics, and Friedman), all from Func-
tion Approximation Repository, publicly available at [11]. This
paper is organized as follows. In Section I we highlight on
reinforcement learning and function approximation. Section I
Il presents random forest in reinforcement learning. Section
IV describes empirical evaluations with experimental results
for function approximation. In Section V we conclude and
present venues for future work. Once the basis functions are
constructed, the function approximator is trained as usual.
alternatively, we devised on linear approximation of function
value based on RF and the bellman error.

II. FUNCTION APPROXIMATION

Before proceeding with our presentation we need to in-
troduce and familiarize the reader with our definitions and
approaches by briefly review reinforcement learning (RL) and
value function approximation. Finally, we present our novel
implementation of on-line RF in the context of RL.

A. Reinforcement Learning

Reinforcement Learning (RL) is an approach of addressing
a wide variety of planning and optimal control methods [1]
to solve sequential decision making problems that can be
modeled by Markov Decision Processes (MDPs) of a tuple
(S, A, P,R) where S is the space of possible states of the
environment, A is a set of actions available to the agent, P :
SxAxS — [0, 1] defines a conditional probability distribution
over state transitions given an action, and R: Sx A — Risa
reward function (payoff) assigning immediate reward to action.
The main idea of RL is that through trial and error, rather than
being implicitly told, continuous interactions between agent
and its dynamic environment can be made in order to satisfy
the goal of autonomy and the adaptability.

B. Value Function Approximation

For large or continuous state space, value-function V™ can
not be represented explicitly (Bellman’s “curse of dimension-
ality” [13]), so instead there are two possible ways to learn
the optimal value-function. One is to estimate the model (i.e.,
the transition probabilities and immediate costs) while the
other is to estimate the optimal action-values directly. Various
dynamic programming methods such as the value- or policy-
iteration methods [12] are often used for approximation. In our
modeling, we assume a large but limit state space represented
by feature matrix ¥, at any given time step ¢t = 0,1,2,--- |
an agent perceives its state s; and selects an action a;. By
exploring a state space an agent tries to learn the best policy,
m : S — A, which maps states to actions. The system
(environment) responds by given the agent some (possibly
zero) numerical reward r(s;) and changing into state s; +1 =
(s, at). Estimate approximation for reward represented as a

vector R € RI*l, are incremented by 7;¢; and ¢ (¢s —Yi11),
where ¢;, ¢;11 are feature vectors at time step ¢ and ¢ + 1,
and the transition probabilities under 7 can be represented as
a matrix P € RI*/*Is|. The state transition may be determined
solely by the current state and the agent’s action or may also
involve stochastic processes. For MDPs, we can define V™
formally as

V7™ (s) :E”{Z’thtsozs} (1)
t=0

Where E™ {} denotes the expected value given that the agent
follows policy, m, and 0 < v < 1 is the discount factor.
Note that the value of the terminal state, if any, is always
zero. A randamoized stationary policy can be identified with
conditional probabilities 7(a|s), which specify the probability
of choosing action a at state s. From mathematical point of
views, value function V™ which can be represented as vector
V € RI*l, is an approximate solution to Bellman’s equation,
which is then used to construct near optimal policies.

VT = z m(als) <R(s,a) +’yZp(s’|s,a)V“(s')>)

a€A(s) ses

A direct solution of the above equation may not be feasible,
either due to unknown environment parameters (p and R) or
due to the cardinality of the state space. In either case, tem-
poral difference (TD) methods may be employed to estimate
V™. However, as can be seen in section Il we are using TD
aggregated with RF to estimate V™. In this case, the value
function approximation has the form V = @6, where ® is
a |S| x m matrix m which each row contains the feature
vector for a particular state, and 6 is a vector of m parameters.
Typically it is desirable to have m < |S|. Usually only ®
is assumed to be given, and the learning algorithm adjusts
6. The optimal policy,m*, can be defined in many ways, but
is typically defined as the policy that produces the greatest
cumulative reward over all states s.

7 = arg max V7(s), (Vs) 3)

where V7 (s) is computed from Eq 1. Alternatively, V™ (s)
could be computed by summing the rewards over a finite
horizon h:

h
=) i &)
=0

If the agent learns with the one-step learning, the agent can
perform on-line learning, because it learn based on one action
state value whereas other algorithms calculate current state
value according to rewards of all actions.

III. RANDOM FORESTS IN REINFORCEMENT LEARNING

In this section we explore the possibility of using our on-line
RF algorithm for function approximation. Our implementation
is structured by the desire to build practical agent applications
and the desire to supply a behavioral guarantee based on a
convergent learning algorithm. Based on the shortcomings of
non-linear approximations of function value, which are usually

Two class

@0 |[—— |

AT A

Grow tree:
-Assign tree depth.
Majority votes:
- 4 (x)= 2 votes

Online Sample

A

New feature space based on our

for w,,k=1,..,c
Output:

Bootstrapped samples

online incremental feature selection

——

-Update base learner
- Choose one sample to

@,,6,)|(@,,0,)|(@,,6;) Policy i | —¢x)

()

) # (@,,6,)
(u(4))

Y (u(l)=1)

update all base learners.
(@,,6,) (@) ‘(%
()
(x) (x) y (05,6,)
@S) W) @

(@,,0,) (@:.0,) (@,.0;)
Space state ¢

A simple parameter representation of weights for a forest. The fitness of the policy is the reward “payoff” when the agent uses the corresponding

Fig. 1.
random forest as its decision policy.

slow to converge and yield in computational complexities. We
devised on linear approximation based on combination of RFs.

A. Online RF

The structure of on-line forest is shown in Figure 1. Based
on variables ranking we develop a new, conditional permu-
tation scheme for the computation of variable importance
measure [7]. The resulting incremental variable importance
is show to reflect the true impact of each predictor variable
more reliably than the original marginal approach. According
to features ranking results, different yet random feature subsets
are used as new feature spaces for learning a diverse base-
learners. The diversity stem from fully growing (unpruned)
independent tree- base learners. Individual trees in RF are
incrementally generated by specifically selected subsamples
from the new feature spaces. In contrast to off-line random
forests, where the root node always represents the class in
on-line mode, for each training sample, the tree adapts the
decision at each intermediate node (nonterminal) from the
response of the leaf nodes, which characterized by a vector
(w;, 0;) with ||w;]] = 1. Root node numbered as 1, the
activation of two child nodes 2¢ and 2¢ 4+ 1 of node ¢ is given
as

(6)

where x is the input pattern, u; represents the activation of
node 4, and f(.) is chosen as a sigmoidal function. Consider
a sigmoidal activation function f(.), the sum of the activation
of all leaf nodes is always unity provided that the root node
has unit activation. The forest consist of fully grown trees of a
certain depth [. The general performance of the on-line forests
depends on the depth of the tree. It is not clear how to select
the depth of the on-line forests. One alternative is to create

Ui41 = ui.f(—w;»a: + 91)

I\

a growing on-line forests where we first start with an on-line
forest of depth one. Once it converges to a local optimum,
we increase the depth by adding one more level to the tree.
Thus, we create our on-line forest by iteratively increasing its
depth. However, we found that the nubmber of trees one needs
for good performance eventually tails off as new data vectors
are considered. Since after a certain depth, the performance
of on-line forest does not vary to a great extent, the user may
choose K (the number of trees in forest) to be some fixed
value or may allow it to grow up to the maximum possible
which is at most |T'| /Nj, where N}, the user-chosen number
of the size of each decision tree. The construction of on-line
forest is based on the majority voting. If there are m decision
trees, the majority voting method will give a correct decision
if at least floor(m/2)+1 decision trees gives correct outputs.
If each tree has probability p to make a correct decision, then
the forest will have the following probability p to make a

correction decision.
m
(; > p(1 —p)

When classifying a new instance, we first estimate the average
margin of the trees on the instances most similar to the new
instance and then, after discarding the trees with negative
margin, weight the tree’s votes with the margin.

m

>

i=floor(m/2)+1

P= (7

B. Futurization State Space

The state space is partitioned into m disjoint group, in order
to transfer a state s from the input space to a vector of input
features then value function is estimated from feature space,

1% fGT FS, where 9 is the parameter vector and F is the
feature vector. Represented state as feature vectors: for each

¢s = [(¢5(1)a¢5(2)’ 7¢s(n))}T (3
Vils,00) = 0] s = 0:(i)04(i))
i=1

In Figure 1 you can see a decision tree which divides the state
space into 13 regions of different resolution. The decision trees
consist of two types of nodes: decision nodes, corresponding
to state variables and least nodes, which correspond to all
possible actions that can be taken. In a decision node a
decision is taken about one of the input variables. Each least
node stores the state values for the corresponding region in
the state space, meaning that a leaf node stores a value for
each possible action that can be taken. The tree starts out with
only one leaf that represents the entire input space. So in a
leaf node a decision has to be made whether the node should
be split or not. Once a tree is constructed it can be used to
map an input vector to a least node, which corresponds to
a region in the state space. We will use Temporal-difference
(TD) learning [2] to associate a value with each region. TD
method is viewed as stochastic approximation methods for
solving Bellman’s equation. TD methods are commonly update
V™ (s) by an amount proportional to the TD error, § where.

d=r+~VT($) — V7™ (s), (10)

and v € [0, 1] is a discount factor.

C. Random-TD Architecture

One possible way to combine TD with RF is to choose
the best combined strategy s;” = s; (s) given the expected
combined strategy for each learners involved and to represent
the value function V™ as combined policy of entire value
function, rather than base value of a given state. iteration [10]
to produce a feature representation for a final linear mapping
where all the learning task place. Unlike in lookup tables, the
value function estimate depends on a parameter vector #;, and
only the parameter vector is updated. Figure 2 demonstrates
the architecture of the proposed Random-TD. It consists of
two modules, a learning module and a hybrid module. These
two modules interact with each other. The learning module is
in the first level, in which both on-line RF and TD learner
learn their control policies individually, based on its current
policy and state. Then, each learner submits its decision of
the selected action or the preference of actions to the hybrid
module, where Random-TD learn the combined policies. Value
function is updated based on input state, reward, following Eq
10. The update rule from step 4 in algorithm 1 is used to
compute the new desired value for state s, denoted T'(s) =
(I1—a)V(s)+a(r+~V(s)). This will be used as target value
for state s to generate an error rate. On the other hand the
depths of trees are modified such as to minimize this error.
Typically, this step is achieved by simply applying gradient
descent once. The action selector chooses an action based
on the value function and some exploration and exploitation
strategies. The hybrid module is at the second level, where
the input information from learning module is dynamically

Take the action, state transition

Decision of hybrid [A hybrid
Module
Random-TD
A
Output Value Function u Output
On-line RF TD-Learning Learning
- Module
State™ 12 Action Selector
Reward Action

Fig. 2. Random-TD architecture.

aggregated. After that, the hybrid module sends a final decision
of action back to the learning module. Then every learner in
the learning module takes the action, transits to a new state,
and obtains an instant reward. Then, each learner updates its
policy. Repeat for a number of steps or until several criteria
are satisfied. Because both the TD-algorithm and RF run on-
line, this is frees us the curse of dimensionality in a sense that
memory requirements need not be exponential in the number
of dimensions. The overall effect is particularly efficient com-
putationally. The Random-TD algorithm for value function

Algorithm 1 Random-TD Policy Evaluation

1: Given the dimensionality d to be used in each projection
the number of features to be added in each iteration, m.
the desire number of iteration K.

2: Initialize state s

3: Choose action a using policy 7 and observe reward r and
next state $

4: Update V (s) such that V(s) < V(s) +alr+ (s) — V(s)]
where « is the learning rate and + is the discount factor
(both between 0 and 1)

5: 85+ §

6: Repeat steps 2-4 until episode ends
7. O <—T

8: @U — TD(ShT't, (I)O)

9: for k=1,2,--- | K do

10: Estimate the Bellman residuals

11: et%R(St—f—’yzsespst,s‘?sk_l—‘78];_1)
122 A« Random-TD (s, e, d)

13: ¥ « SELECT FEATURE (s;,e¢, A,m)
14: OF — [OF1 W)

15: ®F « Random-TD(s;, ¢, ®F)

16: VF o oFGF)

17: end for

18: return V%

approximation is shown in Algorithm 1. The function SELECT
FEATURE (s, e, A, m) uses state s; as data points and the
Bellman error estimate e;, while the transformation from state
space to feature space is done on the previous step. Initially,

TABLE I
DESCRIPTION OF THE FUNCTION APPROXIMATION DATA SETS OBTAINED
FROM THE BILKENT UNIVERSITY DATA REPOSITORY [11]

Dataset Data size | D tmin tmazx Nitrn | Nies
Ailerons (AL) 7154 40 | -0.0003 | -0.00035 | 1000 | 6154
Elevator (EV) 8752 18 0.078 0.012 1000 | 7752
Kinematics (KI) 8192 8 | 1.458521 | 0.040165 | 800 | 7392
Friedman (FR) 40,768 | 10 | 30.522 -1.228 1300 | 39468

a single feature which is 1 everywhere is defined and TD
is used to compute the parameters of the approximator. On
every iteration the Bellman residuals e, are estimated for each
state. In general the model parameters P and R are not be
available so the residuals can only be approximated based on
an approximate model, or on sample data. The accuracy of the
estimates is not crucial since on-line RF algorithm is robust
to noise. In the results presented below, we use approximate
Bellman errors, but using TD errors gives very similar results.
In our experiments SELECT FEATURES is simply discritizes
the state space onto R? into up to m states and returns the
combined feature matrix. Random-TD is repeated to obtain a
new approximation V*.

IV. EMPIRICAL EVALUATIONS
A. Datasets

In order to asses the potential of using Random-TD in
approximating functions, we experimented with the algorithm
described above, in the context of learning a high-dimensional
control problems: Ailerons, Elevator, Kinematics, and Fried-
man, a standard reinforcement learning benchmark on which
several linear function approximators have previously per-
formed poorly. All these data sets are Function Approximation
Repository,* publicly available at [11]. Table I summarizes the
data sets in terms of the size of instance, number of input di-
mensions (D), the range of the target (predicted) (t,min, tmaz)s
and the size of training and testing set (Nypp, Nies)

B. Experimental Settings

Before reporting our results, let us provide a brief descrip-
tion of the data sets as in [11]. THE AILERONS data set is a
simulated control problem: The attributes describe the status
of the aircraft, and the aim to predict the control action on the
ailerons of an F16 aircraft . THE ELEVATOR data set is similar
to the Ailerons, and obtained from the task of controlling
an F16 aircraft. However, attributes here are different from
the Ailerons domain, and the goal (predictor) variable is
related to an action taken on the elevators of the aircraft.
THE KINEMATICS data set is concerned with the forward
kinematics of an eight-link robot arm. THE FRIEDMAN data
set is an artificial data set originally used by Friedman (1991)
in approximating functions with MARS (multivariate adaptive
regression splines).

We added and report results for Friedman, in order to demon-
strate the capability of Random-TD to scale up in higher
density of state.

4Available at: hitp://funapp.cs.bilkent.edu.tr/DataSets/

TABLE 11
PERFORMANCE OF RANDOM-TD ON THE FUNCTION APPROXIMATION
DATA SETS IN TABLE I, FOR DIFFERENT DEPTHS

Absolute error
Dataset Depth=3 | Depth=4 | Depth=5 | Depth=6 | Depth=7
Ailerons 0.000111 | 0.000114 | 0.000112 | 0.000117 | 0.000126
Elevator 0.0702 0.0541 0.0483 0.0298 0.0301
Kinematics | 0.1001 0.0672 0.0487 0.0425 0.0521
Friedman 1.1213 0.7322 0.5622 0.6074 0.5628
TABLE III

RESULTS SHOWING A COMPARISON USING RANDOM-TD, TD, AND
Q-LEARNING. THE UNITS FOR ABSOLUTE BELLMAN ERROR. IM DENOTE
THE IMPROVEMENT OF RANDOM-TD OVER TD-LEARNING

Dataset Random-TD | TD-learning | Q-learning | Im %
Ailerons 0.000121 0.000125 0.000123 29
Elevator 0.0523 0.0543 0.0549 4.4
Kinematics 0.0493 0.0520 0.0507 3.1
Friedman 0.5472 0.7533 0.7512 9.6

C. Experimental Results

In this section we demonstrate the performance of Random-
TD and also compare it with other function approximation
paradigms. Our goal in these preliminary experiments is not
necessarily to demonstrate the superiority of our approach
in terms of sample complexity, but rather its availability as
an alternate approach to the reinforcement learning function
approximation problem. In table I we report the results in
terms of the mean absolute Bellman error (BE) for the test
data set, with ¢ = 0.1 in all cases.

BE = e, |y(x) — o(z)|, (11)

where ¢ stands for the expected value, and o(z) is the output.

We report the results for different depths of the tree. We
initialize each w; randomly with the constraint |Jw; = 1||. We
always initialize each 6; = 0.

On another set of experiment, we report a comparison
results in Table I using Random-TD, TD-learning, and
Q-learning. The results, are averaged over 20 independent
runs. Although we also compared against backpropagation
algorithm, However, We did not report the results of static
backpropagation since we could not get results for these data
sets using static backpropagation due to the memory limitation.
As can be seen in Table I, the Random-TD always performs
significantly better than the standard TD. Q-learning has done
reasonably well against TD. In comparison to our algorithm,
however, Q-learning has not done very well, which can be
easily explained. Q-learning is not design for average reward
problems, and that it is able to outperform TD. Q-learning was
done with the discounting factor set to 0.99.

TABLE IV
CPU TIME TAKEN BY RANDOM-TD OF DIFFERENT DEPTHS FOR
DIFFERENT DATA SETS OF FUNCTION APPROXIMATION

CPU Time (seconds)

Dataset Depth=3 | Depth=4 | Depth=5 | Depth=6 | Depth=7
Ailerons 2189 4870 6321 11,602 | 25,498
Elevator 1100 2000 3723 8,844 22,033
Kinematics 892 1566 3211 6609 15,613
Friedman 3319 7900 14,198 | 33,928 | 80,067

The learning in the on-line mode relieves function approx-
imator of the memory storage required as in the batch mode.
Thus, Random-TD can be effectively used for larger data sets
as well, trading memory requirements at the expense of time
required to learn the class labels. In Table IIl, we report the
CPU time in seconds taken by the Random-TD algorithm for
function approximation, including the learning in 200 epochs.
We can observe that the CPU time increases exponentially
with the depth of the tree. We have noted that Random-TD
converges well before 200 epochs, although we report all the
results for 200 epochs. The CPU time, as reported in Table I
V, taken by the Random-TD can be reduced if the number of
epochs is reduced, however, the results indicate we are still
very cheap to compute. It is interesting to observe in Table IV
that the Friedman data set took almost over 20 hours for 200
epochs . However, backpropagation could not handle even 5%
of this data set for training due to the memory constraint.

V. CONCLUSION

Learning control problems are surprisingly complex prob-
lem. It needs to address how to learn from (possibly delayed)
rewards, how to deal with very high-dimensional learning
problems, and how to use efficient function approximators
with robust performance. Despite the challenges when we
aggregate supervised learning with TD-learning, we still reap
benefits from both paradigms. From TD-learning we gain the
ability to discover behavior that optimizes performance. From
supervised learning we gain a flexible way to incorporate
domain knowledge. In this paper we propose Random-TD
representation as a new model for function approximation to
solve problems associated with learning in large state and
actions spaces. This reduces the size and complexity of the
state and action space, because it causes values to be associated
with regions in the state space instead of having to learn
a value for each point in the state space. It also Its also
contribute to avoid the problem of combinatorial explosion that
existing formalisms such as the MDPs suffer when they learn
value for combinations of actions. Random-TD is able to learn
completely in the on-line mode, and since we do not freeze
the learning, it can adapt to a changing situation, provided the
rate of change is much slower than the rate of learning. No
user-defined is required, the only free parameter of Random-
TD is the forest depth, and we demonstrated that after a certain
depth, the performance of Random-TD does not vary to a great
extent. Our empirical results demonstrate the feasibility and
indicate strong potential for this proposed model. Of course,
a lot more experimentation is needed to assess the merits of
this approach.

REFERENCES

[1] Sutton, R., & Barto, A. “Reinforcement Learning: An introduction,”
Cambring, MA: MIT Press, 1998.

[2] Sutton, R. “Learning to predict by the method of temporal differences,”
Machine Learning, 3:9-44. 1988.

[3] Leo Breiman, “Bagging predictors,” Machine Learning, 24(2):123.140,
1996.

[4] Leo Breiman, “Random Forests,” Machine Learning, 45(1):5.32, 2001.

[5] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J.
Stone, “Classification and regression trees,” Wadsworth Inc., Belmont,
California, 1984.

[6]

[7]
[8]

[9]
[10]

(1]

[12]
[13]

[14]

[15]

(16]

[17]

[18]

R. Schapire, Y. Freund, P. Bartlett, and W. Lee, “Boosting the margin: a
new explanation for the effectiveness of voting methods,” Ann. Statist.,
26(5):1651-1686, 1998.

Hassab Elgawi Osman, “Online Random Forests based on CorrFS and
CortBE,” In Proc.IEEE workshop on online classification, CVPR, 2008.
Merz, C., & Murphy, P, UCI repository of machine learn-
ing databases, 1996. Available online at http://www.ics.uci.edu/
mlearn/MLRepository.html.

Munos, R., & Moore, A. “Variable resolution discretization in Optimal
Control,” Machine Learning, 49, 291-323, 2002

Bertsekas, D., “Dynamic programming and optimal control,” Vol. 1 third
edtition. Athena Scientific

Guvenir, H. A.,, & Uysal, I, Bilkent
tion approximation repository, 2000.
http://funapp.cs.bilkent.edu.tr/DataSets/.

S. Ross., “Applied Probability Models with Optimization Applications,”
Holden Day, San Francisco, California, 1970

R. Bellman. “Dynamic Programming,” Princeton University Press,
Princeton, New Jersey, 1957

Chien, J., Huang, C., & Chen, S. “Compact decision trees with cluster
validity for speech recognition,” In IEEE Int. Conf. Acoustics, Speech,
and Signal Processing (pp. 873-876). Piscataway, NJ: IEEE Press, 2002.
Cho, Y. H., Kim, J. K., & Kim, S. H. “A personalized recommender
system based on web usage mining and decision tree induction,” Expert
Systems with Applications, 23, 329-342, 2002.

Pyeatt, L. D.,& Howe, A. E. “Decision tree function approximation in
reinforcement learning,” (Tech. Rep. No. CS-98-112). Fort Collins, CO:
Colorado State University, 1998.

Uther,W. T. B., & Veloso,M.M. “Tree based discretization for continuous
state space reinforcement learning,” In Proc. Sixteenth National Con-
ference on Artificial Intelligence (AAAI). Cambridge, MA: MIT Press,
1998.

Wang, X., & Dietterich, T. “Effficient value function approximation
using regression trees,” In T. Dean (Ed.), Proceedings of the 1JCAI-99
Workshop on Statistical, 1999

University func-
Available online at

