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Abstract—This paper introduces an unsupervised method to 
acquire the lexical semantics of action verbs. The eventual goal of 
the presented method is allowing a robot to acquire language 
under realistic conditions. The method acquires lexical semantics 
by forming association sets that contain general perceptual 
symbols associated with a certain concept as well as perceptual 
symbols of the utterances of the name of a concept. The lexical 
semantics is learned with the help of a narrator who comments 
on what the robot sees. The technique works even if the narrator 
only occasionally comments on what the robot sees. The paper 
presents experimental results that show that the method can 
acquire the lexical semantics of action verbs while the robot is 
watching a human who performs actions and hearing a narration 
that only occasionally actually describes what the robot is 
currently seeing. A comparison with supervised learning 
algorithms shows that the method discussed in this paper 
outperforms other techniques. 

Keywords-language acquisition; lexical semantics; perceptual 
symbol systems; unsupervised learning 

I. INTRODUCTION 
Children have a remarkable ability to acquire language. It 

has been a challenge to replicate this ability in machines. The 
research discussed in this paper uses a developmental approach 
to tackle this problem. This paper presents an unsupervised 
algorithm for acquiring lexical semantics that was designed to 
work in a robot that mimics a child’s development. In 
particular, the input to the robot is very similar to the type of 
input a small child would receive, i.e. sensory input combined 
with the speech of adults. 

This research focuses solely on semantics and ignores 
syntax. In particular, the experiments presented in this paper 
deal with the acquisition of lexical semantics of certain action 
verbs. However, the presented method is also applicable to 
general lexical semantics acquisition tasks. 

Children can acquire language rather quickly in part 
because they usually have some understanding of the meaning 
of the words they learn. In particular, when children start to 
acquire language, they already have a basic world model. Thus, 
language learning must be preceded by a stage in which the 
child acquires a basic model of its environment. 

One important problem is the particular representation of 
the basic world model. The research presented in this paper 
uses a perceptual symbol system to represent the world model. 
This type of representation has been proposed by Barsalou [1]. 
The perceptual symbols are acquired through sensory-motor 
interactions with the environment. The method described in 
this research first acquires a set of perceptual symbols and then 
acquires lexical semantics using the perceptual symbol system 
from the first stage as the basic world model. The next sections 
will provide more details about the nature of the perceptual 
symbols, how they are acquired and finally how they can be 
used to learn language. 

While the technique discussed in this paper can be applied 
to more general lexical semantics acquisition problems, the 
experiments and results presented in this paper focus on the 
acquisition of the semantics of action verbs. In particular, the 
results show that the perceptual symbol system acquired by the 
robot can be used to successfully acquire the semantics of the 
action verbs in an unsupervised manner even if the robot is 
presented with narrations that contain many random words. 

II. RELATED RESEARCH 
This research is most closely associated with autonomous 

mental development (AMD) and developmental robotics. Ref. 
[2] gives a brief introduction into AMD. A more detailed 
overview with some research issues is presented in [3]. An 
overview of developmental robotics can be found in [4]. A 
summary of current research in epigenetic robotics, which is 
related to developmental robotics, is given in [5]. 

The method discussed in this paper relies on information 
theoretic measures to identify associations. Information 
theoretic measures have been successfully used in the past to 
learn lexical semantics. As an example, Roy and Pentald [6] 
have developed a computational model called CELL which 
acquires words from multimodal sensory input. The CELL 
system uses mutual information to associate utterances with 
visual input. Unlike the CELL system, this research focuses on 
actions and deals with sentences which may or may not 
correspond to what the robot sees. Gold, Doniec and Scassellati 
present the word trees method, which reconstructs the 
speaker’s decision process in choosing a word [7]. They use 



entropy to learn word trees. Yu and Ballard present a system 
that extracts perceptual representations from sensory data using 
clustering [8]. Their system uses these representations to 
ground the meaning of nouns and verbs. Unlike Yu and 
Ballard's system, the method presented in this paper also allows 
the narrator to speak sentences unrelated to the video input. 

There have been a few projects that have investigated 
language learning using robots. Ref. [9] presents a variety of 
methods to train a robot. They teach the robot simple verb-
noun commands using supervised learning. Ref. [10] describes 
a system that learns two word verb-noun sentences. Their 
system uses separate linguistics and behavior modules that are 
linked together with a parametric binding method. The 
MirrorBot robot [11] tries to mimic mirror neurons. A self 
organizing map is used to map action words to body areas that 
are used to execute the action, thus replicating neuroscience 
data. Ref. [12] describes an architecture to acquire language 
with an autonomous robot that interacts with its environment. 

Ref. [13] describes a simulated system that learns single 
verbs and thus focuses on lexical semantics. In particular, the 
system maps verb meaning to predefined action schemas called 
x-schemas. Ref. [14] proposes an implementation of perceptual 
symbol systems that captures the temporal structure of an 
action using a recurrent Neural Network. Ref. [15] presents a 
simulated robot that learns the names of actions. In contrast to 
the perceptual method presented here, Siskind uses event-logic 
expressions to recognize the occurrence of spatial motion verbs 
in short image sequences [16]. 

There is plenty of neuroscience support for perceptual 
symbol systems [1]. [17] have conducted a number of brain 
imaging studies in which subjects where listening to words. 
The results clearly show that action verbs activate motor 
neurons which are involved in executing the meaning of the 
action verb. [18] provide even more evidence that natural 
language understanding activates motor areas in the brain. [19] 
were able to show that sentences which contain action words 
activate a mirror neuron that is involved in processing the 
action represented by the word. [20] have developed a model 
for language acquisition in children and have determined that 
when a predefined sensory-motor model is employed not only 
is the acquisition of single words simplified, but the acquisition 
of syntax can be accomplished more easily. Cohen, Morrison 
and Cannon [21] show that preschool-age children choose 
words to describe movies based on dynamical aspects of the 
movies. 

The problem discussed in this paper is a more complex 
variant of the symbol grounding problem [22] (see [23] for a 
more recent overview). In the method discussed in this paper, 
the learner has to discover the symbols. The problem is further 
complicated by the weak association between a word and the 
visual input it describes, i.e. the word is only sometimes 
present when the corresponding visual input is present and 
many unrelated words may be present, too. 

III. ASSOCIATION SETS 
The method discussed in this paper uses association sets to 

represent meaning. An association set is simply a set of highly 
associated perceptual symbols. 

 
Figure 1.  An apple is represented by an association set that consists of 

perceptual symbols. 

An example of such an association set is shown in fig. 1. 
This figure shows how the meaning of an apple is represented. 
There is actually no internal symbol named apple. Rather the 
meaning of an apple is represented through a number of 
perceptual symbols that describe the visual appearance of 
apples, the smell of apples, the taste of apples, and so on. These 
perceptual symbols are linked together in an association set. 
This particular set of links represents the meaning of an apple. 

The set of all association sets functions as the world model. 
The world model is learned by discovering new association 
sets. Association sets are formed whenever a strong association 
between a set of perceptual symbols is identified. In order to be 
able to identify these associations, the robot needs to interact 
with its environment. 

This type of representation has several advantages. First, 
the meaning is composed of only perceptual symbols and does 
not require any built-in symbols that would need to be 
magically defined by an expert. Second, the meaning of a 
concept is easily extensible. By adding new links to other 
perceptual symbols, the meaning of a concept can be expanded 
or modified. Third, it is possible to compare two concepts by 
comparing the perceptual symbols in the association sets. 

An association set allows the retrieval of all perceptual 
symbols in the association set given any subset of the 
perceptual symbols. For example, it is possible to identify all 
concepts that are associated with a certain sound. This comes in 
handy in the acquisition of lexical semantics. The utterances of 
a word are also treated as perceptual symbols. The name of a 
particular concept can be learned simply by placing the 
perceptual symbol that represents the utterance of the name of 
the concept into the association set that represents the concept. 
This is demonstrated in fig. 1. The utterance “apple” is one of 
the perceptual symbols in the apple association set. 

A key advantage of acquiring lexical semantics via this 
method is that the same algorithm that is used to discover the 
general association sets can be used to acquire lexical 
semantics. Initially, association sets will first only associate 
basic perceptual symbols with each other and will not contain 
any language utterances. Once the association sets start to 
mature, utterances will be organically added to the association 
sets by just continuing the same learning method. 

In principal, it is also possible to build a hierarchy of 
association sets by linking association sets with other 
association sets. However, this is not further pursued in this 
paper. 



IV. PROBLEM DEFINITION 
This section provides a more formal problem definition. 

Section A discusses the input, section B discusses the required 
learning task and section C discusses the expected output. 

A. Input 
The input is similar to the type of input a young child 

would experience. In the experiments discussed in the paper, 
the input is provided by a conventional video camera and a 
microphone. The general algorithm is agnostic about the 
specific type of input such that in general other sensors could 
be used as well. For the verb acquisition discussed in this 
paper, a stationary camera was sufficient. However, in general 
a robot that interacts with its environment can produce richer 
association sets and thus acquire a better world model. Since 
the specific focus in the experiments is on action words, the 
video camera was pointed at a scene in which a human 
executed a number of actions on a set of objects. In particular, 
the human carried out one of the following 13 actions: bounce, 
carry, drop, juggle, kick, lift, lower, pull, push, roll, swing, 
throw or wave. The actions were carried out with one of the 
following 6 objects: a ball, a tray, a bottle, a box, a bag, or a 
chair. In order not to add too much complexity to the vision 
part, the video was recorded under controlled conditions in a 
lab. 

It is important to point out that there is nothing special 
about this particular set of actions or objects. The basic 
algorithm is completely agnostic about its input and can be 
applied to other setups as well. This setup has been selected 
primarily to test the algorithm on a reasonably challenging 
case. 

While the human is performing the action, a single narrator 
utters some comments on the microphone. In principal, the 
comments can be arbitrary sentences. However, since syntax is 
not an issue, the comments consist of a set of words. In 
particular the narrator utters K many words during each sample 
selected from a list of W many words. With probability Q, one 
of the K words may be the name of the action that is performed 
by the actor. 

The input to the algorithm is the combination of video and 
audio. A sample input is shown in fig. 2. For simplicity, the 
input is provided in the form of samples, where each sample 
consists of a video sequence depicting the action performed by 
the human and some audio that contains the narration provided 
by the narrator. 

 
Figure 2.  One input sample consists of a video sequence and an audio 

narration. 

B. Learning Task 
Given the video sequences and narration discussed in 

section A, the algorithm has to be able to acquire lexical 
semantics. The number of actions and words in the language 
are not supplied to the algorithm. First, the algorithm has to 
identify perceptual symbols in the video and audio. Next, the 
algorithm has to detect strong associations between the 
perceptual symbols and identify appropriate association sets. 
Assuming the algorithm functions as expected, the lexical 
semantics should be acquired automatically, since the 
perceptual symbols that represent the utterances associated 
with the names of the actions will be placed in the same 
association sets as the perceptual symbols that represent the 
visual appearance of the action. 

As discussed earlier, each narration consists of K words. 
The K words are selected from a set of W words. With 
probability Q, one of the K words might be the name of the 
action. The narrator has no obligation to actually name the 
action in the narration. For example, if the human kicks a ball, 
the narrator might comment about pushing a chair. However, it 
is assumed that the narrator will occasionally comment about 
the performance of the actor using the actual name of the 
action. 

The weak relationship between the narration and the visual 
perception provide a much more realistic problem setup. After 
all, adults do not necessarily always comment about what 
children pay attention to. In the case of a robot that acquires 
language from a narrator, the narrator might not always 
comment on what the robot currently pays attention to, such 
that a certain tolerance to unrelated comments is required. 
However, this setup also makes the learning problem much 
more difficult. Experiments show that many traditional learning 
techniques fail under these circumstances. The problem is that 
there is no direct relationship between the utterances and the 
visual input. In summary, the learning task is quite challenging 
because: 

• The algorithm does not know the number of actions or 
words in the language. 

• The comments provided by the narrator are not 
guaranteed to include the name of the action visible in 
the video. 

• There is no supervised input that labels the actions or 
words. 

C. Expected Output 
In essence, the algorithm generates a world model in form 

of a set of association sets. The algorithm first identifies and 
generates a list of perceptual symbols. Using this list of 
perceptual symbols, the algorithm then discovers and outputs a 
set of association sets. 

If the algorithm has functioned correctly, the output should 
contain one association set for each concept. In this case, there 
should be precisely 13 association sets, one for each action. 
Furthermore, each association set should contain visual and 
auditory perceptual symbols that are associated with only one 
action. 



The algorithm will demonstrate that it has acquired the 
lexical semantics correctly by placing the perceptual symbol of 
the utterance of an action in the association set of that action. In 
other words, given a video sequence of an action, the output of 
the algorithm could be used to name the action, or vice versa 
given the name of an action and a long video, a video sequence 
that depicts the action could be identified. 

It is important to understand that the algorithm is 
unsupervised and thus there is no simple right or wrong 
answer. The output of this algorithm is more comparable to the 
output of a self-organizing map. There are many possible 
combinations of association sets that can be identified all of 
which are equally correct. 

V. ALGORITHM 
The algorithm consists of five main steps: 

1. Preprocessing 

2. Computation of similarity matrices 

3. Discovery of perceptual symbols via clustering 

4. Computation of the association matrix 

5. Discovery of association sets 

Steps 3 through 5 are completely agnostic about the specific 
nature of the input. Steps 1 and 2 have been adapted to the 
specific problem setup. In order to apply the algorithm to 
another problem setup, the first two steps may need to be 
modified. The algorithm is discussed in more detail in [24]. 

A. Preprocessing 
The input consists of a series of samples, each of which 

consists of some video sequence and some narration. The 
preprocessing step prepares the input for the similarity 
computation step. In particular, the visual preprocessing 
identifies the path along which the object travels and computes 
the elevation of the object as well as the distance to the human 
during each step. This requires algorithms to detect the human 
and object as well as to track the object across frames. 

The auditory preprocessing computes several power spectra 
at different resolutions. The frequency bands of the spectra 
widen with increasing frequency. The spectra are normalized 
along each time slice in order to highlight the relative 
differences between the frequency bands at each point in time. 

B. Computation of the Similarity Matrices 
The discovery of perceptual symbols requires the ability to 

determine the similarity between each pair of samples. This is 
simplified by computing a similarity matrix. The entry in 
column i and row j of the matrix specifies the similarity 
between sample i and sample j. One similarity matrix is 
computed for each modality. The separate similarity matrices 
allow the discovery of unimodal perceptual symbols for each 
modality. 

The visual similarity matrix is primarily based on the 
similarity of the object path extracted from each sample. The 
paths are segmented into a series of straight lines. Two paths 

are compared by comparing the length, slope, base, average 
and height of each corresponding pair of line segments. In 
addition, the algorithm also determines whether an object is 
pushed or pulled. 

In the case of the audio, the similarity matrix is computed 
by comparing the preprocessed power spectra. It turns out, that 
after preprocessing an element by element comparison with a 
time shift is sufficient. Various time shifts are tried to find the 
best match between the spectra. The distance computation 
penalizes pairs of power spectra based on the difference of their 
length. 

C. Discovery of Perceptual Symbols 
Perceptual symbols are discovered via agglomerative 

clustering. Each cluster represents one perceptual symbol. 
Agglomerative clustering starts by placing each sample into a 
separate cluster and then repeatedly merges nearby clusters 
with each other. In order to identify nearby clusters, the 
agglomerative clustering algorithm only needs to know the 
similarity between each pair of samples. This can be easily 
looked up in the similarity matrices computed in step 2. The 
distance between two clusters is determined by the average 
similarity between all pairs of samples in the two clusters. 

The agglomerative clustering stops once all clusters have a 
minimum size and distance to each other. These two thresholds 
need to be manually specified. In the experiments discussed in 
this paper, the agglomeration stops once visual clusters contain 
at least 30 samples and have a minimum distance to each other 
of 0.15 based on a maximum distance of 1.0. Audio clusters are 
required to contain at least 10 samples and have a minimum 
distance to each other of 0.3. 

The set of clusters produced by the third step represents the 
perceptual symbols. In general, the perceptual symbols do not 
coincide with any particular high level concepts, but represent 
repetitive perceptual patterns. For example, a particular 
utterance may be represented by multiple perceptual symbols. 

D. Computation of the Association Matrix 
The fourth step determines the strength of association 

between each pair of perceptual symbols. This information is 
needed by the last step. The associations are organized in an 
association matrix. The entry in column i and row j of the 
association matrix specifies the association between perceptual 
symbol i and j. 

Associations are determined by computing the pointwise 
mutual information (PMI) between two perceptual symbols. 
Thus, given two perceptual symbols a and b, the association 
between the two symbols is determined via (1). 
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In the particular case discussed in this paper, a is a visual 
perceptual symbol and b is an auditory perceptual symbol. The 
association matrix is normalized such that the mean association 
is zero and the standard deviation is 1. 



E. Discovery of Association Sets 
The association sets can be discovered using the association 

matrix. Essentially, perceptual symbols that are highly 
associated with each other are placed into one association set. 
The discovery of association sets is similar to agglomerative 
clustering. First, all pairs of perceptual symbols that are highly 
associated with each other are placed in some association set. 
Next, pairs of association sets that contain perceptual symbols 
that are on average highly associated with each other are 
merged together. This continues until all such association sets 
have been merged together. 

A pair of perceptual symbols is considered to be highly 
associated with each other if their association with each other is 
at least 2 standard deviations above the mean. This is an 
arbitrary number that works well in a number of cases and can 
be changed if needed. 

The final output is a list of association sets. Ideally, each 
association set represents one concept, which is in this case an 
action. Thus, all visual and auditory perceptual symbols of a 
given action should be present in the same association set. 

VI. EXPERIMENTAL RESULTS 
The algorithm was thoroughly tested with a number of 

parameter configurations. This section highlights the main 
results. The experiments were run on a total of 3,074 samples. 

A. Measuring Performance 
Since the algorithm is unsupervised, it is not trivial to 

measure the performance. There are two criteria that determine 
a good set of association sets. First, each association set should 
contain only perceptual symbols that belong to one action. This 
is a measure of the purity of the association sets. Second, there 
should be exactly one association set for each action. This is a 
measure of compactness. The algorithm could achieve perfect 
purity by producing trivial association sets for each action by 
generating one association set for each perceptual symbol. 
Thus, it is desired that the output is as compact as possible and 
as pure as possible. 

This is conveniently measured by the entropy product. The 
entropy product is the product of two entropy measures. The 
first entropy measure reflects the purity of the association sets 
and the second measure reflects the compactness. For 
simplicity, entropy product values are normalized such that the 
best value is 1 and the worst is 0. 

 
Figure 3.  Experimental results. PMI is the method discussed in this paper. 

The full formula for the entropy product is quite lengthy 
and is presented in [24]. In summary, if all association sets 
contain only perceptual symbols of one action and there is 
exactly one association set per action, the entropy product will 
be 1. Otherwise, if a few association sets contain perceptual 
symbols of more than one action or there is more than one 
association set for some actions, the entropy product will be 
less than 1. If all association sets contain all perceptual 
symbols, the entropy product will be zero. 

The entropy product is determined under a number of 
parameter configurations. The most important one of these 
parameters, called Q, specifies the probability that one of the K 
words in the narration is the actual name of the action. Thus, if 
Q is 1, the narrator mentions the name of the action among the 
K words every time the actor performs the action in the video. 
This guarantee makes the problem relatively simple. If Q is 
below 1, given N samples approximately only Q × N many 
samples will contain a narration that mentions the name of the 
action. In the remaining samples, the narration will be 
completely unrelated to the action. Thus, as the Q value is 
lowered, the problem becomes more challenging. Traditional 
algorithms will typically fail if the Q value is significantly 
lowered. 

B. Main Results 
The main result is summarized in fig. 3. This figure shows 

the results when W, the number of words in the language, is 30 
and K, the number of words in each narration, is 5. As can be 
seen, the technique proposed in this paper and indicated with 
the label PMI (pointwise mutual information) in the figure 
performs very well until Q drops to a value of about 0.5. 

In order to be able to better evaluate the results, the 
algorithm has been also compared with two supervised 
learning algorithms. These two algorithms are support vector 
machines (SVM) and neural networks. Note that unlike the 
method discussed in this paper, the supervised learning 
algorithms receive the true labels of the samples. The SVM 
has been trained with a linear kernel and the neural network is 
a standard 3 layer network that was trained with back 
propagation. 

As can be seen from fig. 3, the technique discussed in this 
paper outperforms the two supervised learning algorithms. In 
particular, the supervised learning algorithms have trouble for 
Q values below 1, which is not surprising. Supervised learning 
algorithms are not designed for that type of learning problem. 
In contrast, the method presented in this paper has been 
designed precisely for such conditions. 

Other experiments show that the performance of the 
algorithm decreases as K decreases, while the performance 
increases as W increases. In fact it can be shown that the 
strength of association between perceptual symbols linked to a 
given concept is proportional to (2). 

 
K
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Thus, it is easier to discover association sets if the language 
contains many words. In contrast, it gets more difficult if the 
narrator speaks in long sentences. 

Other experiments show that the algorithm can very reliably 
distinguish function words from content words. Furthermore, 
the algorithm is very robust under noisy conditions. 

The algorithm presented in this paper has been also tested 
under a variety of other parameter configurations and with 
other data sets. In all cases, it has shown robust results and has 
outperformed the two supervised learning algorithms. A more 
complete list of results is provided in [24]. 

VII. CONCLUSION 
This paper has presented a technique that is capable of 

acquiring lexical semantics in an unsupervised manner by 
discovering associations between perceptual symbols. The 
technique even works if the narration heard by the robot is only 
occasionally related to what the robot sees. The method 
presented in this paper outperforms standard supervised 
learning algorithms. 

The technique discussed in this paper has several 
advantages. First, it is relatively simple. As a consequence, the 
algorithm is quite fast and scales well to large sample sizes. 
Furthermore, its simplicity makes it more biologically 
plausible. Second, the use of perceptual symbols and 
association sets make the algorithm more easily extensible to 
other problems. The method can be easily applied to other 
problems, since the core parts the algorithm are agnostic about 
the specific input. 

The method presented in this paper is a very promising 
direction to achieve general language acquisition in robots. 
While this paper has focused on action verbs, future versions of 
the algorithm may also support more complex words and 
sentences. The level of complexity that can be supported 
primarily depends on the underlying perceptual symbols and 
how well they can be acquired. A robot that can interact with 
its environment in a rich way would be able to acquire more 
complex perceptual symbols. Furthermore, future versions of 
the algorithm may also provide a mechanism to hierarchically 
build association sets from more primitive association sets 
opening up the possibility to represent higher level semantics. 
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