
 

 

 

Abstract 
 

To correctly understand human actions, it is necessary 
to segment a continuous series of movements into units 
that can be associated with meaningful goals and 
subgoals. Recent research in cognitive science and 
machine vision has explored the perceptual and 
conceptual factors that a) determine the segment 
boundaries that human observers place in a range of 
actions, and b) allow successful discrimination among 
different action-types. In this project we investigated the 
degree to which specific movements effectively predict key 
sub-events in a broad range of actions in which a human 
model interacts with objects. In addition, we aimed to 
create an accessible tool to track human actions for use in 
a wide range of machine vision and cognitive science 
applications. Results from our analysis suggest that a set 
of basic movement cues can successfully predict key sub-
events such as hand-to-object contact, across a wide 
range of specific tasks, and we specify parameters under 
which this prediction might be maximized. 

1. Introduction 

A key goal of both cognitive scientists and researchers 
in machine vision is to understand how the actions of 
sentient agents such as humans are processed, identified, 
and understood [1-10].  The most salient challenge 
inherent to this process is the need to segment a continuous 
set of visual movements into meaningful discrete actions. 
The need to segment movements into meaningful actions is 
similar to the need to segment a continuous speech stream 
into discrete meaningful words, and both cases involve 
defining small atomic units that can be identified, and 
grouped into larger meaningful units. Here, we briefly 
review research exploring this problem within the 
cognitive science and machine vision literatures then 
present an experiment testing the utility of a machine 
vision approach to action perception in a setting that would 
be most useful for future cognitive science research on 
action perception. 

An important limitation of machine vision research has 
been that the actions used to train and test these automated 

systems have either been very limited in scope, and 
possibly poorly representative of real-world action 
analysis, or they have been broader, but more focused on 
identifications of very basic gross bodily movements (such 
as standing or sitting), or cyclic actions (such as walking).  
Little research has focused on the kinds of action that 
might characterize the early human social learning 
environment which includes many face-to-face interactions 
with people as they look at and manipulate objects.  
Another issue with the research in machine vision systems 
is that it often relies on an array of input devices or a 
highly calibrated system of cameras to provide information 
for segmenting and identifying actions that would be 
impractical for use in most labs that study human behavior.  
A large percentage of the information in human learning 
interactions is gathered strictly from vision across a broad 
field of view.  Therefore, one of the goals of the current 
project is to create a visual tracking system that can be 
adapted for easy use in fields outside of engineering.  This 
system has numerous uses and can be applied across many 
interdisciplinary research fields.  The system should be 
robust in its abilities, yet cost efficient enough to be 
affordable to most any lab.   

2. Background/Related Work 

2.1. Behavioral results 

Early cognitive science research in action perception 
focused both on basic action segmentations, and the role of 
more abstract expectations in interpreting action.  The 
segmentation research demonstrated that observers could 
reliably provide segmentation markers that seemed to 
coincide with breaks between actions, and that the units 
defined by these breakpoints were psychologically salient. 
For example, when subjects view stills from moments 
selected as action breakpoints, they are better able to 
reconstruct the narrative sequence that the actions 
instantiate. More recent research has confirmed that action 
segments can be organized hierarchically, with large goal-
defined actions (e.g. emptying the dishwasher) subsuming 
actions that represent subgoals (e.g. putting a single dish 
away)[1]. 
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 Much of this research has assumed that human-
generated action segmentations represent the combined 
influences of basic perceptual cues such as changes in the 
direction of moving body parts, and more complex 
cognitive constraints such as an understanding both of 
context-consistent sequences of actions, and of the actor's 
goals. For example, in one recent study [7], subjects were 
asked to segment the movements of a two simple shapes 
on a computer screen. One group of subjects was told that 
the movements were generated by two people playing a 
game, and the other group was told (correctly) that the 
movements were randomly generated.  Both groups then 
segmented the actions. Results indicated that the 
segmentations were predicted by a number of basic 
movement features such as direction changes and the mean 
proximity of the two objects. However, these basic 
movement features predicted segmentations most strongly 
when subjects believed that the movements were random. 
According to the researcher, this occurred because subjects 
in the person condition focused more on abstract 
conceptual goals and less on specific movement features 
than subjects in the random condition. 

 The above study was one of the first to explore the 
specific features that predict human-generated action 
segmentations, but it was limited because the stimuli used 
were, by necessity, relatively artificial. Although this 
produced the desired unambiguous result of conceptual 
attribution, it leaves open questions about the degree to 
which these movements would predict action 
segmentations in more realistic actions involving a full 
human figure interacting with objects. 

 To explore the features that might predict action 
segmentations in a more ecological context, we completed 
an analysis of segmentations for a wide range of realistic 
actions in which a set of human models was videotaped 
completing a series of ten different tasks with a range of 
objects [17]. Instead of using basic movement features to 
predict segments, we defined a set of more meaningful 
subactions that were hand coded. These included hand-to-
object contacts, object-to-object contacts, occlusions, and 
eye movements. We found that multiple regressions based 
on these subactions predicted up to 82% of the variance in 
the number of breakpoints entered (by eight judges) in 
each one-second bin. 

This previous study suggests that segmentation of 
natural actions might benefit from an explicit attempt to 
link the basic movements and direction changes that are 
usually the basis of machine vision approaches with more 
meaningful subactions prior to attempts at trajectory 
grouping. Accordingly, the system we describe in the next 
section was used to parse a broad set of face-to-face 
actions. These parses were then tested for their ability to 
predict hand coded subactions similar to those coded in 
our previous project. 

2.2. System basis 

The hardware for the system is a digital camcorder that 
feeds into either a laptop or desktop computer.  Since the 
system uses a single camera to collect information, the 
video information will be from a single uncalibrated 
camera view point.  The initial visual system is also 
described in Tugcu’s dissertation [14]. 

The system we used starts by training on the objects of 
interest that are hand defined and provided by the user.  
These objects are sent to the system by selecting regions of 
the object from the 480 row x 720 column image.  To 
represent these objects, our system uses feature vectors 
composed of a high dimensional HSV color space 
histogram along with a Laplacian texture measure.  The   
region is broken into 7x7 blocks of pixels.  Each block has 
its colors represented by the color histogram and is stored 
as a feature vector of that particular object.   

After a training database is created for all the desired 
objects, this database is compared to a new 480x720 image 
that is broken into overlapping 7x7 regions.  To lessen the 
amount of processing necessary for each comparison an 
approximate nearest neighbor tree is constructed and used 
to classify each pixel of the processed image [14,15]. 

Using the resulting 118x178 segmented images, location 
information for the different objects is extracted.   

3. Methods 

In this experiment, we trained a system using a set of 10 
face-to-face tasks, each performed by 10 models. The 
system processed the entire set of frames for the videos of 
each model performing each task, segmenting the frames, 
storing them, and then using them as the basis for motion 
tracking. The videos were marked by a human rater (JH) 
for specific subevents, to test the degree to which extracted 
motions could effectively predict subevents such as hand-
to-object contacts, and specific gaze events 

3.1. Behavioral Tasks 

The tasks are various assembly and sorting types shown 

in Table 1. 

Table 1: Experiment Tasks 
 

Tasks Description 

Task 1: The assembly of 3 

flashlights 

The flashlights are fully 

dismantled.  The participant must 

construct all 3 flashlights. 

Task 2: The assembly of 3 item 

baskets 

The basket, lid, tissue paper, and 

green Legos are in their own 

groups.   There is also a stamp 

block. The user must construct a 

basket by placing a Lego, tissue 

paper and the lid in that order.  

The basket is finalized by 

stamping it with the stamp block.  

This is to be repeated for the next 

two baskets. 

Task 3: The assembly of pipe 

structure 
Four cylinder shaped pipes and 

two junction pipes are connected 

in a particular manner.  All the 

pipes must be used to construct a 

structure. 

 

Task 4: The sorting and filling of 

containers 

Six containers are stacked on top 

of each other and must be 

rearranged in a particular order 

with Lego blocks placed inside 

each one in a particular order. 

Task 5: The filling of containers 

with Legos 

Three yellow containers are to be 

filled with one color of Legos.  



 

 

The pile of Legos consist of 3 

different colors and are all piled 

together. 

Task 6: The removal of Legos 

from containers and storing into 

another container 

Three containers are located side 

by side.  The two periphery 

containers contain Legos to be 

moved to the center container. 

Task 7: Occlusion Movement Two Legos and a occluding object 

are on the table.  The Legos are to 

be moved behind the occluding 

object, then moved to other sided 

of the occluding object. 

Task 8: Occlusion Assembly A T-shaped structure is created 

from Legos in plain sight of 

camera. Then, another T-shaped 

structure is created behind the 

occluding object.  Finally, the 

occluding object is moved away. 

Task 9: Assembly of 3 T-shaped 

structures 

The different-colored T-shaped 

Lego structures are constructed. 

Task 10: Lego Stacking Legos are to be stacked until all of 

the Legos are used, or the structure 

collapses.  There are two attempts 

at this task. 

3.2. System Assumptions 

For each task, a model sits at a table with a set of 
objects and performs some type of assembly task.  The 
current system assumes that there are 2 hands and 1 gaze 
estimator in the video.  Once these three regions are 
classified by the user, the features of the video are 
extracted.  To facilitate segmentation, the model wore a 
red glove on their right hand and a purple glove on their 
left hand and a hat with a lime green strip down the center.  
The camera faced the model from across the table (Figure 
1). 

 

 
         (a)           (b) 

Figure 1: (a) Original Image  (b) Segmented Image 

 

Each tree is trained on the set of the same task since 
each task includes the same set of objects.  After 
processing the frame, the frame number, object name, 
object center row value, object center column value, max 
width of object, max height of object, number of pixels of 
object, and angle displacement from vertical line through 
centroid of the head are recorded in a text file for the 
second stage of the analysis.  

3.3. Behavior Feature Vector  

Based on the movements of the segmented objects, a 
new feature vector was created to analyze the motions of 

the person in the video.  Many of these feature vectors 
correspond to some of the stronger features in other studies 
[11-13, 16].  The 12 computed features are shown in Table 
2. 

 

Table 2: Behavior Features 
 

Behavior Feature Description 

Magnitude velocity of 

Hand 1 

This value is calculated by taking the centroid 

values of hand 1 between successive frames 

and calculating the Euclidean distance 

between them.  These distances are averaged 

across the bin 

Velocity Stop of Hand 

1 

This is a binary value that is decided by if the 

mean velocity of hand 1 is less than 1.5 pixels 

between successive frames of that bin (1 if 

true, 0 if false). 

Object Contact of 

Hand 1 

This is a binary value that is decided by 

drawing a line between the centroid of an 

object and the centroid of hand 1.  If the 

number of pixels that are not classified as the 

hand or the object in question is less than 2 

for all object groups in the image, then hand 1 

is considered near an object. (1 if true, 0 if 

false). 

Hand 1/ Object 

Change 

This is an average of the change in the 

number of pixels represented by objects when 

hand 1 is within 30 pixels of them. 

Magnitude velocity of 

Hand 2 

This value is calculated by taking the centroid 

values of hand 2 between successive frames 

and calculating the Euclidean distance 

between them.  These distances are averaged 

across the bin. 

Velocity Stop of Hand 

2 

This is a binary value that is decided by if the 

mean velocity of hand 2 is less than 1.5 pixels 

between successive frames of that bin (1 if 

true, 0 if false). 

Object Contact of 

Hand 2 

This is a binary value that is decided by 

drawing a line between the centroid of an 

object and the centroid of hand 2.  If the 

number of pixels that are not classified as the 

hand or the object in question is less than 2 

for all object groups in the image, then hand 1 

is considered near an object. (1 if true, 0 if 

false). 

Hand 2/ Object 

Change 

This is an average of the change in the 

number of pixels represented by objects when 

hand 2 is within 30 pixels of them. 

Gaze Velocity This is the mean velocity of the estimated 

gaze angle change across a bin.  (Note: Gaze 

is estimated by using a stripe on the 

participant’s hat.  The angle is calculated by 

estimating the angle between the best fit line 

for the points of the stripe and the vertical line 

between the centroid of the stripe) 

Gaze Object This is a binary value that is decided by if the 

gaze angle is within 10 degrees of an object 

for at least half the frames of a bin (1 if true, 0 

if false). 

Gaze Hand This is a discrete value with possible 

values of {0, 1, 2, 3}.  This value is 

determined if the gaze estimation is within 10 

degrees of : 

 None of the Hands – yields a value 0 

 Hand 1 alone – yields a value 1 

 Hand 2 alone – yields a value 2 



 

 

 Both of the Hands – yields a value 3 

Gaze Stop This is a binary value calculated by if the gaze 

velocity of a bin is less than the mean gaze 

velocity of the entire video (1 if true, 0 if 

false). 

3.4. Significant Moment Labeling 

The first author marked video frames in which key 
subevents occurred as defined by their importance in 
describing the steps needed to complete the task.  These 
moments are chosen to be at the finest resolution of the 
motions in the task.  Selection of these subevents reflected 
the findings of the study mentioned earlier [17] where the 
segmentation boundaries corresponded to hand-to-object 
contact and object-to-object interactions with gaze 
confirmation (using participant gaze to disambiguate the 
model’s current focus of attention).  A frame was selected 
as a significant frame if there was hand to object contact; 
hand induced object to object contact, or releasing of an 
object.  In many cases, key events extended over multiple 
frames.  For example, the tasks often require combination 
of objects.  These combinations require the contact of two 
objects and applying force to squeeze them together.  
During the moment of the hands holding the objects and 
applying the force, all frames depicting this event were 
marked for the subevent.  Depending on the task, the 
participant, and the bin size, the number of marked bins 
ranged between one-third to one-half of the total bins in 
the video.    

3.5. Bin Size Analysis 

All of the features are dependant on bin-size.  The 
videos were recorded with a frame rate of about 30 frames 
per second.  So, the feature vectors were calculated for 
bin-sizes of 1, 3, 6, 8, 10, and 20 frames.  Bins were 
defined as “marked” if any frame within the bin had been 
selected by the rater.  The bins included sequential sets of 
bin-size frames with no overlap (e.g. for bin-size 3, the 
first vector consisted of frames 1-3, the second will 
consisted of frames 4-6, and so on). 

3.6. D-Prime Performance Measure 

The measure used to determine performance is called d-
prime (D').  In Table 1, there are 2 D' measures, D1' and 
D2', that are calculated.  D1' takes the average hit rate and 
the average false alarm rate of all the then calculates the D' 
from that value.  D2' is calculated by taking the individual 
D' for all the available hit rates and corresponding false 
alarm rates, and taking the average of all the D' values.  
Since D2' has the possibility of containing infinity values, 
those individual D' values are replaced with a value of 0.5 
to represent maximum uncertainty.  This measure is the 
average of the D' values for each individual test set.  

4. Prediction Analyses 

The data were in the format of 100 videos (10 
participants doing 10 tasks each).  Each video had its set of 
behavior feature vectors calculated for each of the bin-
sizes for analysis.  Various regression models were trained 
and tested on the data to determine the best methods using 
the D’ measure. 

The data were analyzed using a “jack knife” method in 
which each participant was removed and a regression 
classifier was trained on the remaining data and tested for 
its ability to fit removed participant’s data.  This was done 
for all participants using linear, quadratic, and 
Mahalanobis regression techniques.  The same analysis for 
a task jack knife was performed as well.  The results were 
very similar to the results of the subject jack knife. 

Other methods were used as well such as k-nearest 
neighbors and support vector machines.  The k-nearest 
neighbor method was the closest to matching the best 
results of the linear regression analysis.  Support vector 
machines (SVM) using the radial basis function performed 
worse and using the linear svm performed about the same 
as the linear regression. 

 
 

 

Table 3: Comparison of Bin Size and Regression Models using Subject Jack Knife 
 

 Linear Quadratic Mahalanobis 

Binsize 

(frames) 

HR 

(µ, σ) 

FAR 

(µ, σ) 

D1' D2' 

(µ, σ) 

HR 

(µ, σ) 

FAR 

(µ, σ) 

D1' D2' 

(µ, σ) 

HR 

(µ, σ) 

FAR 

(µ, σ) 

D1' D2' 

(µ, σ) 

1 (0.869, 

0.060) 

(0.513, 

0.088) 

1.088 (1.124, 

0.294) 

(0.195, 

0.163) 

(0.042, 

0.065) 

0.864 (0.886, 

0.460) 

(0.378, 

0.119) 

(0.113, 

0.048) 

0.903 (0.921, 

0.265) 

3 (0.839, 

0.077) 

(0.399, 

0.090) 

1.247 (1.309, 

0.357) 

(0.842, 

0.078) 

(0.396, 

0.088) 

1.267 (1.325, 

0.327) 

(0.478, 

0.131) 

(0.146, 

0.062) 

0.998 (1.038, 

0.321) 

6 (0.859,  

0.079) 

(0.385, 

0.011) 

1.368 (1.411, 

0.385) 

(0.819, 

0.083) 

(0.349, 

0.096) 

1.300 (1.362, 

0.338) 

(0.488, 

0.129) 

(0.132, 

0.067) 

1.085 (1.131, 

0.332) 

8 (0.843, 

0.092) 

(0.375, 

0.126) 

1.326 (1.396, 

0.358) 

(0.792, 

0.097) 

(0.328, 

0.107) 

1.259 (1.332, 

0.375) 

(0.516, 

0.132) 

(0.157, 

0.077) 

1.047 (1.109, 

0.385) 

10 (0.804, 

0.114) 

(0.360, 

0.134) 

1.215 (1.298, 

0.385) 

(0.738, 

0.108) 

(0.303, 

0.105) 

1.152 (1.210, 

0.361) 

(0.496, 

0.131) 

(0.161, 

0.086) 

0.982 (1.053, 

0.424) 

20 (0.626, 

0.127) 

(0.432, 

0.211) 

0.494 (0.472, 

0.546) 

(0.345, 

0.128) 

(0.185, 

0.148) 

0.500 (0.402, 

0.400) 

(0.395, 

0.131) 

(0.226, 

0.155) 

0.487 (0.435, 

0.418) 
 

 

 

 

 

 



 

 

Table 4: Top 3 Feature Set Results for Subject Jack Knife 

  

5. Results 

Overall, predictions of subevents based on the 
movement and contact variables were moderate, and 
strongest for 6 frame bins using a linear classifier (as can 
be shown by Table 3). The data was also analyzed with the 
k-nearest neighbor method since this method converges to 
the MLE results.  The k number of neighbors was 
incrementally increased by 50 to a group of 10001.  Since 
the total amount of vectors created for the top bin-size of 6 
for the entire data set was 22,862 , this max k value would 
sufficiently capture the maximum D'.  Analysis shows D1' 
increases dramatically then saturates at a value of about 
1.400 with the value k around 950 nearest neighbors. 

To assess the degree to which our 12 predictor variables 
can be represented by a smaller number of more basic 
factors, we performed a principle components analysis.  
First, the entire database is thinned out.  The thinned data 
are the points that have the smaller distances from its 
nearest neighbor.  The thinned data vectors are about half 
in number compared to the full data set.  Fisher’s linear 
discriminant analysis is applied to the thinned data as well 
as a principal component analysis (PCA). By calculating 
the eigenvalues and eigenvectors of that cross correlation 
method, the top 3 eigenvalues that caused the most 
variance in the data were identified.  The eigenvectors 
corresponding to these eigenvalues were applied 
multiplied to the data and plotted.  Four distinct groups 
could be seen, each with interesting points tightly clustered 
and non-interesting points trailing outward. 

 
Table 5: Top 3 Feature Sets for Linear Analysis using 

Subject Jack Knife 

 
 Top 3 Feature Sets for Linear Analysis 

1st 10 8 5 4 2 1 

2nd 8 7 5 4 2 1 

3rd 9 8 7 5 2 1 

 

Table 6: Top 3 Feature Sets for Quadratic Analysis using 

Subject Jack Knife 

 
 Top 3 Feature Sets for Quadratic Analysis 

1st 12 7 5 1 - - 

2nd 12 11 7 5 1 - 

3rd 5 1 - - - - 

 

 

 

Table 7: Top 3 Feature Sets for Mahalnobis Analysis 

using Subject Jack Knife 

 
 Top 3 Feature Sets for Mahalanobis Analysis 

1st 10 9 8 6 3 2 

2nd 10 9 8 7 6 2 

3rd 10 9 8 6 2 - 

 

It was decided that further analysis of the feature 
combinations were to be examined.  Exhaustive analyses 
of all combinations of features (up to 6 total features) were 
examined in predicting the key moments and the top 5 
feature sets were calculated.  The purpose of doing this 
analysis was to determine if a subset of the features used 
would provide as good or better results from the use of all 
features.  Table 4 has the same format as Table 3 except 
showing the statistics of each technique’s 1st – 3rd best 
feature combination results for the subject jack knife.  
Tables 5-7 show the top 3 feature combinations for each of 
the regression methods. 

The most prominent features for the linear set are 1, 2, 
5, and 8.  These 4 features are found in all instances of the 
top 5 feature sets.  Features 1 and 5 are the velocities of 
the two hands, feature 2 correspond to the binary feature 
for stopped hand 1 motion, and feature 8 corresponds to 
the amount of pixel change around hand 2.  In the linear 
regression case, these features embody the information 
needed of the hand.  Notice that the best feature sets also 
involve gaze information (feature 10) or rather the gaze 
toward an object. 

The quadratic results are very similar except using even 
fewer features.  Features 1 and 5 are necessary in every 
instance for the top 5 sets and feature 12 adds the gaze 
information needed for the top set of features in the subject 
jack knife analysis.   

The Mahalanobis results show a high tendency toward 
the binary or discrete values.  This measure focuses on the 
hand stop features (2 and 6) but also uses the gaze angular 
velocity (feature 9) and gaze toward objects (feature 10) to 
perform at its highest capacity. 

The velocity features correlate with grasping since a 
majority of the grasps require a pause in the hand motion.   
This same reasoning also explains the correlation between 
the binary hands stopped features as well.  Since grasps 
occur when the velocity of the hand is low and low gaze 
motions indicate focusing on an action, these findings 
support the findings of the Psychology Department 
analysis of a high correlation between significant moments 

 Linear Quadratic Mahalanobis 

Top 5 

Results 

HR 

(µ, σ) 

FAR 

(µ, σ) 

D1' D2' 

(µ, σ) 

HR 

(µ, σ) 

FAR 

(µ, σ) 

D1' D2' 

(µ, σ) 

HR 

(µ, σ) 

FAR 

(µ, σ) 

D1' D2' 

(µ, σ) 

1st (0.891, 

0.079) 

(0.435, 

0.134) 

1.397 (1.461, 

0.391) 

(0.908, 

0.069) 

(0.458, 

0.134) 

1.431 (1.486, 

0.424) 

(0.875, 

0.082) 

(0.407, 

0.128) 

1.388 (1.439, 

0.386) 

2nd (0.889, 

0.076) 

(0.432, 

0.132) 

1.391 (1.460, 

0.371) 

(0.903, 

0.070) 

(0.450, 

0.125) 

1.427 (1.458, 

0.426) 

(0.875, 

0.083) 

(0.406, 

0.128) 

1.388 (1.439, 

0.386) 

3rd (0.886, 

0.080) 

(0.426, 

0.136) 

1.391 (1.467, 

0.397) 

(0.917, 

0.066) 

(0.482, 

0.132) 

1.426 (1.466, 

0.437) 

(0.875, 

0.082) 

(0.406, 

0.128) 

1.388 (1.438, 

0.385) 



 

 

in the task with hand grasps and gaze. 

6. Conclusion 

The visual system designed by Tugcu has served as a 
basis for a new system that is able to segment human 
action sequences. We were successful in predicting 
subevents using a set of basic movement features for a 
wide range of tasks in which a model manipulated objects.  
A key finding was the consistency of this prediction, both 
across tasks and across performers, revealed by the small 
amount of variability in D' measures for the jackknife tests. 
We also systematically assessed the movement-subevent 
relationship for a range of bin sizes, and found that 6-
frame bins were optimal.  Overall, the system maintains a 
moderate D' about 1.37 to 1.39. The main factor limiting 
the D' is the high false alarm of around 0.40.  The high 
false alarm implies a need for more accurate behaviour 
feature extraction.  One solution would be to increase the 
resolution of the base image of the video.  This would 
allow for improved models of the hand which can remove 
a lot of the ambiguity in the motions of the hand 
(particularly toward fluid grasps or releases of objects 
which involve very little or no pause in the velocity of the 
hand). 

These findings extend previous research on action 
parsing in three ways. First, we demonstrated the success 
of a specific action parsing technique. Second, we 
identified a set of basic movement features that align with 
subevents in human action. There are two proposals for the 
way that basic movement features might support parsing of 
human action [8, 9]. For one, dynamic intentional action 
may contain statistical structure. Certain motions may co-
occur more frequently than others, because they are 
causally linked to achieving a goal (e.g., in cooking, the 
motion of slicing a vegetable may be preceded by the 
motion of grasping a knife, while slicing motions would 
only rarely preceded by grasping a towel). Recent research 
has established that adults use these statistical regularities 
to group actions into units [10]. In addition to statistical 
regularities, there may be a predictable configuration of 
movements that occurs in the physical and temporal 
characteristics of bodily motion. These configural cues 
may reliably indicate segment boundaries. To act 
intentionally, we first locate relevant objects—typically 
resulting in head turns and associated changes in gaze 
orientation—and then contact them with our hands. 
Sensitivity to configural cues may assist with action 
segmentation if such cues reliably recruit observers’ 
attention at the right moments. The present research 
provides suggestive evidence for the utility of such 
configural information in action parsing.  

The third contribution this work makes involves 
isolating an ecologically important set of tasks. These 
face-to-face interactions are not the typical stimulus for 
machine vision approaches to action parsing, and yet they 
are a good candidate for the context in which human 
infants learn to parse and identify actions, and, ultimately, 
the intentions and goals of the people they interact with. 
Accordingly, a potentially interesting next step in this 
analysis would be to explore correlations between the 
information available based on a purely perceptual 
analysis of movements, and infants’ ultimate responses to 

specific behavioral sequences. For example, a basic 
movement analysis such as the one presented here might 
serve as a basis for predicting infants’ tracking of objects 
and events. If infants gradually develop a deeper 
understanding of the goal-directed nature of action during 
their first year of life, it might be possible to observe 
initially strong movement-based control over looking that 
gradually lessens as they complete their first year of life, 
and focus more on the deeper meaningful structure of 
actions than on perceptual patterns. 
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