
 

  
Abstract - The Morris water maze task is a spatial memory 

task in which an association between cues from the environment 
and position must be learned in order to locate a hidden 
platform. This paper details the results of using a temporal 
difference (TD) learning approach to learn associations between 
perceptual states, which are discretized using a Self Organizing 
Map (SOM), and actions necessary for a robot to successfully 
locate the hidden platform in a “dry” version of the water maze 
task. Additionally, the adaptability of the temporal difference 
learning approach in non-stationary environments is explored. 
 

I. INTRODUCTION 
iven the ability of animals to navigate and interact with 
the complex world around them, biological systems have 

been a source of much inspiration in the field of robotics. The 
inspiration for this work comes from a behavioral procedure 
originally designed by Richard Morris to study spatial learning 
in the rat called the Morris water maze [1]. In the typical 
Morris water maze experiment, a rat is placed into a circular 
pool of water from which the only escape is a raised platform. 
The raised platform is positioned just below the water’s 
surface, and the water is made opaque to hide the platform 
from view of the rat. This ensures no local cues from the 
platform are used to guide the rat’s behavior. Over multiple 
trials, normal rats learn to swim directly towards the hidden 
platform from any starting position around the edge of the 
pool, given the platform remains in a fixed location. 

Much work has been done using the water maze to 
investigate spatial learning and memory tasks. Redish and 
Touretsky [2] used a simulated environment to evaluate a 
computational model of the hippocampus and how it allows 
rodents to solve the water maze task. In addition, Brown and 
Sharp [3] used a simulated water maze environment to 
investigate how spatial behavior could be guided by spatial 
information in the hippocampal formation.  

Foster et al. [4] used temporal difference learning to model 
how hippocampal place cells might be used for spatial 
navigation by rats. First, they simulated a reward based 
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navigational approach based solely on input from place cells. 
Second, they simulated a combined approach using input from 
place cells and information about the rats’ self motion to 
acquire a goal independent coordinate system. Like Brown 
and Sharp [3], they used simulated place cells to provide a 
representation of the current position of the rat, as opposed to 
direct visual perceptual cues from the environment.  

Krichmar et al. [5] constructed a dry version of the water 
maze task to assess the spatial memory of a brain-based device 
called Darwin X, whose behavior was guided by a simulated 
nervous system modeled on the anatomy and physiology of 
the vertebrate nervous system. A 16x14 foot rectangular room 
was used as the water area, with a hidden circular platform 
made of reflective paper. Darwin X was equipped with a color 
camera for vision, odometry for self-movement information, 
an IR sensor for platform detection, and IR sensors for 
obstacle avoidance. 

Based on Krichmar’s work, Busch et al. [6] used a 
simulated water maze environment to compare an attributed 
probabilistic graph search approach and a temporal difference 
learning approach based solely on visual cues from the 
environment. The simulated robot was equipped with three 
cameras to gather perceptual information from the 
environment and used a Self-Organizing Map (SOM) [7] to 
discretize the perceptual space. 
 The work described in this paper is based on extending the 
temporal difference learning navigational approach used by 
Busch et al. [6] from a simulated water maze environment into 
a physical “dry” water maze environment. Additionally, the 
adaptability of the temporal difference learning approach is 
investigated by moving the platform.  

Section II of this paper describes the setup of the water 
maze task. Section III details how the robot gathers perceptual 
information from the environment, and how this information is 
discretized using an SOM. Section IV explains the details of 
the temporal difference learning system. Section V presents 
the results of two experiments that were carried out in the 
physical environment on a Pioneer P3-DX robot.  Finally, 
section VI explores the adaptability of the temporal difference 
learning approach in non-stationary environments through 
simulation. 
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II. WATER MAZE SETUP 

A. Environment 
A rectangular enclosure, modeled after the simulated 

environment from [6], is used for the “dry” water maze 
experiments. The enclosure is 5.26m by 6.06m, and contains a 
circular “hidden” platform that is 0.41m in diameter.  Eighteen 
colored panels are arranged around the enclosure using 
approximately the same layout as in [6].  Fig. 1 shows pictures 
taken from within the enclosure. 

 

 

 
 
 

 
 

 
 

B. Robot 
A pioneer P3-DX was used in the experiments.  The robot is 

equipped with two FireWire web cams, seen in Fig. 2, with 
wide angle lenses. The cameras capture 640x480 color 
images. Each camera has an approximate horizontal field of 
view of 90 degrees before adjustment for lens distortion. Due 
to the adjustment, the cameras have an effective field of view 

of approximately 80 degrees. The robot’s sonar sensors were 
used for basic obstacle avoidance.  

Finally, the robot is equipped with an assembly of four 
infrared sensors, mounted beneath and towards the front of the 
robot, for detection of the hidden platform.  All four of the 
sensors must be over the hidden platform for it to be detected.   

 

III. PERCEPTION 

A. Panel Detection 
The panel detection process consists of first removing lens 

distortion from images captured from the web cams, filtering 
the images, and performing color segmentation. Only the top 
halves of the captured images are used for panel detection. 
This helps eliminate panel detection problems due to 
reflections from the shiny floor or the color of the hidden 
platform. Examples of the panel segmentation are shown in 
Fig. 3. Although the panel segmentation process is relatively 
robust, errors do occur do to limited camera resolution and 
inconsistent lighting conditions in the environment. Although 
these errors do not occur with great frequency, it is one source 
of error not present in simulation. The Open Source Computer 
Vision Library [10] is used for the image processing. 
 

 

 
 

B. Discretization 
In [6], a Self-Organizing Map (SOM) is used to discretize 

the perceptual space.  The SOM allows the large number of 
possible perceptual states to be discretized into a useable 
number for the temporal difference learning system. The 
SOM(s) used in the experiments were trained from 
approximately 7,400 perceptual vectors collected by letting 
the robot randomly roam throughout the environment with an 
obstacle avoidance behavior. For the experiments described in 
Section V and VI, an 8x8 SOM was used. 

Initially, the panel segmentation information collected from 
each camera is used to generate a feature vector.  As each 

Fig. 3. An example of panel detection from the two FireWire web cams on 
the P3-DX robot. Images (a) and (b) are the top halves of raw images 
captured from the left and right cameras respectively.  Images (c) and (d) are
the corrected and filtered images from the left and right cameras respectively.
Finally, images (e) and (f) show the resulting panel segmentation. 

Fig. 2. The Pioneer P3-DX robot used in the experiments. Two FireWire web
cams are mounted on the front of the robot. The infrared sensor assembly can
be seen beneath the front of the robot. 

Fig. 1. Images taken of the enclosure. Images (a) through (d) were taken from
left to right around the enclosure. The black paper mounted above the green
and yellow panels helps in determining the top of the panels during
segmentation. 



 

camera has the possibility to encounter any of the 18 colored 
panels, each vector consists of 18 bins.  If a panel of a certain 
color is detected, the height of that panel in pixels is stored in 
the first empty bin corresponding to the color of the panel, as 
the robot has no way to determine which of the panels it is 
observing.  These feature vectors are then used to determine 
the current SOM node of the robot. 

 

IV. LEARNING 
In this spatial memory task, temporal difference (TD) 

learning [11] is used to learn an association between the 
discretized perceptual states (SOM nodes) and possible 
actions. TD learning is implemented using the Working 
Memory Toolkit (WMtk) [8] developed at Vanderbilt 
University, which is based on the biology of the prefrontal 
cortex and the midbrain dopamine system.    

When the learning system is first initialized, the action 
preferences are set randomly. These preferences are then 
adjusted by the TD system based on rewards received during 
training episodes. A reward function is called at the end of 
each time step (after each move) and is defined as:  
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where c is the current number of chunks in the learning 
system’s store, m is the maximum number of moves allowed 
per episode, and n is the number of the current move in the 
current episode. 

Thus, the robot is rewarded at the end of each training 
episode depending on whether it has or has not found the 
hidden platform.  If the platform has been found, a positive 
reward inversely proportional to the number of moves 
required to find the platform is given. If the hidden platform 
has not been found, then a negative reward is given.  In 
addition to the delayed rewards, the robot is given an 
immediate negative reward when the obstacle avoidance 
behavior is initiated, and when the learning system selects 
none of the five possible actions (c = 0).  (When this occurs, 
an action is chosen at random.) These sparse measures of 
performance are the only feedback the robot receives. 

 Each training episode consists of a maximum of 51 
moves. For each move the robot determines which SOM node 
it is currently in, and then selects one of five possible actions 
to take. The five possible actions are: hard left, left, forward, 
right, and hard right; each action is executed for one second. If 
the robot finds the goal before 51 moves have been executed, 
the run is ended.  If the obstacle avoidance behavior is 
initiated, the robot rotates in place until its directional axis is 
30 degrees beyond parallel with the wall (which is 
approximated using sonar readings), then starts a new move. 

Finally, to evaluate the performance of the system, 
evaluation episodes are used. During these episodes 
exploration and learning are turned off such that the current 
action preferences of the system are always selected.  

 

V. EXPERIMENTS 
Two experiments were developed for the physical 

environment to evaluate the performance of the TD system in 
learning the associations necessary to locate the hidden 
platform: a single corner experiment, and a four corner 
experiment.  

A. Single Corner 
In this experiment, the robot is allowed to train for a fixed 

number of episodes, at which point it is then evaluated.  Each 
training episode consists of starting the robot at a single fixed 
starting location, which can be seen in Fig. 4. During each 
episode the robot is allowed up to 51 moves to locate the 
hidden platform. Once 51 moves have been executed, or the 
hidden platform has been found, the episode is ended. The 
robot is then repositioned to the single starting location for the 
next episode.  

 

 

 
 
The results of one single corner water maze experiment are 

shown in Fig. 5 and Table I, and are typical of those obtained 
during other tests. Fig. 5 (a) shows the number of moves per 
episode during a training sequence of 100 episodes. As can be 
seen, the robot fails to find the platform during most of the 
early training episodes. Fig. 5 (b) shows an example path of 
the robot during one of these early training episodes. Within 
approximately 20 training episodes, however, the robot 
appears to learn a path to the platform. Fig. 5 (c) shows the 
path of the robot during episode 22. As the training sequence 
continues the robot does fail to locate the platform during 
certain episodes. Fig. 5 (d) shows the path of the robot during 
episode 64, an episode in which it fails to find the platform. 
The path in Fig. 5 (d) is typical of many failed runs later in the 

Fig. 4. Illustration of the single starting corner water maze task showing the 
starting location and heading of the P3-DX robot. Location coordinates are 
shown in meters. 



 

training process. The robot generally follows a successful path 
to the platform but just misses it. More information is needed 
to identify the exact reason. However, these failures could be 
due to the exploration of the TD learning system, or could be 
caused by some combination of parameters such as goal size, 
SOM size, sensory uncertainties, etc. Clearly, though, the 
frequency of episodes during which the platform is not found 
decreases as the training process progresses. 
 

 

 
 

TABLE I 
SINGLE CORNER EVALUATION RESULTS 

 Before 
Training 

After 100 Training 
Episodes 

Evaluation Episodes 40 40 

Average Moves per Episode 48.5 23.6 

Episodes Platform not Found 32 8 

 
 
To determine improvement, the robot was evaluated both 

before and after the training episodes. Table I shows the 
results of these evaluations. Noticeable improvement can be 
seen after the 100 training episodes as compared with the 
results obtained before training.  

B. Four Corner 
In this experiment, the robot is again allowed to train for a 

fixed number of episodes, at which point it is evaluated.  Each 
training episode consists of starting the robot at one of four 
starting locations, which can be seen in Fig. 6. The four 
starting locations are visited in the following sequence: lower 
left, lower right, upper right, and upper left. During each 
episode the robot is allowed up to 51 moves to locate the 
hidden platform. Once 51 moves have been executed, or the 
hidden platform is found, the episode is ended. At the end of 
each episode the robot is repositioned to the next starting 
location in the sequence described above.  

 

 

 
 

The results of one four corner experiment are shown in Fig. 
7 and Table II, and are typical of those obtained during other 
tests. Fig. 7 (a) shows a moving average of the number of 
moves per episode during a training sequence of 100 episodes. 
The average is taken over the current episode and the previous 
three. A moving average is used to display the change over all 
four starting locations.  

As in the single corner task, the robot fails to find the 
platform during many of the early training episodes. Fig. 7 (b) 
shows the paths of the robot from each starting location for 
episodes 2-5. After approximately 70 training episodes, the 
robot appears to learn a path to the platform from each of the 
starting locations. Fig. 7 (c) shows the paths of the robot from 
each starting location for episodes 69-72. Here again, 
however, as the training sequence continues the robot does fail 
to locate the platform during certain episodes. Fig. 7 (d) shows 
the paths of the robot from each starting location for episodes 
91-94, in which the robot fails to locate the platform from the 
lower right starting location during episode 94.  

As in the previous task, the robot was evaluated before and 
after the training episodes to determine improvement. For the 
four corner task, the evaluation episodes are carried out from 
all four starting locations in the same sequence as during 
training. The evaluation consists of 40 total episodes, thus 10 
evaluation episodes are conducted from each corner. Table II 
shows the results. Here again, noticeable improvement can be 
seen after 100 training episodes as compared with the results 
before training.  

Fig. 6. Illustration of the four starting corner water maze task showing 
starting locations and headings of the P3-DX robot. During training and 
evaluation, the starting locations were visited in the following sequence:
lower left, lower right, upper right, and upper left. This sequence was
repeated until the desired number of episodes was completed. Location 
coordinates are shown in meters. 

Fig. 5. (a) Plot of moves per episode during 100 training episodes for the
typical single corner water maze task presented here. (b) Path of robot during
episode 2. (c) Path of robot during episode 22. (d) Path of robot during
episode 64. The displayed paths are highlighted in red in (a). The inner box in
(b), (c), and (d) shows the distance at which obstacle avoidance is activated.
The robot’s path is logged using odometry during training and evaluation
episodes. This information is not used by the learning system.  



 

 

 
 

TABLE II 
FOUR CORNER EVALUATION RESULTS 

 Before 
Training 

After 100 Training 
Episodes 

Evaluation Episodes 40 40 

Average Moves per Episode 46.0 20.1 

Episodes Platform not Found 30 3 

 
 

C. Physical vs. Simulation 
Although environmental differences make a direct 

comparison of moves per episode in the simulated and 
physical environments difficult, results obtained with the 
physical robot are similar to results obtained in simulation, on 
the same experiments, in terms of the number of training 
episodes required for the robot to learn a path to the hidden 
platform (both for one or four corners).  

 

VI. NON-STATIONARY ENVIRONMENTS 
One of the main motivations for using the TD learning 

approach is the ability for online learning and adaptability of 
the system to non-stationary environments. However, the 
experiments reported thus far have all involved a stationary 
environment. Therefore, experiments using the four corner 
task were conducted in simulation, using the setup from [6], to 
test the adaptability of the TD approach. 

A. Initial Testing 
Fig. 8 (a) shows the results, averaged over 10 trials, of 

allowing the robot to train for 400 episodes with the platform 
at an initial starting location, moving the platform to a new 
location, and then allowing the robot to train for 400 
additional episodes. As can been seen from the graph, the 

robot does learn to find the platform at the new location; 
however, its performance is noticeably worse after 400 
training episodes as compared to the performance obtained 
with the original location. This degraded performance is 
explained by the fact that the paths the robot learns to the new 
location almost always build from the paths the robot learned 
to the original location. Thus, the robot learns paths to the new 
location that, generally, first pass through the original location. 
As Fig. 8 (a) illustrates, the learning which takes place during 
the initial 400 episodes seems to hinder the ability of the TD 
system to fully adapt, learn optimum paths, to the new 
location. This result is further illustrated in Fig. 8 (b), in which 
the platform location was changed twice during a training 
sequence. 

Fig. 8 (c) shows the results of extending the experiment 
conducted for Fig. 8 (a) for 400 additional episodes.  
Specifically, the platform was moved back to where it 
originally started after episode 800.  As can be seen from the 
graph, there is not a large spike in the number of moves per 
episode when the platform is moved back to where it 
originally started, as the paths the robot learned to the new 
platform location generally pass through the original platform 
location. Although this indicates that a significant amount of 
what was learned during the initial 400 episodes was retained, 
it also supports the idea that an inability to “forget” what was 
previously learned significantly hinders the ability of the TD 
system to truly adapt in non-stationary environments. 

 

 

 

Fig. 8.  (a) Plot of moves per episode over 800 training episodes during which 
the platform was moved after episode 400. (b) Plot of moves per episode over
1200 training episodes during which the platform was moved after episode
400 and episode 800.  (c) Plot of moves per episode over 1200 training
episodes during which the platform was moved after episode 400, and then
moved back to where it originally started after episode 800.  Results were
averaged over 10 trials in (a), (b), and (c). 

Fig. 7. (a) Plot of the sliding window average of moves per episode during
100 training episodes for the typical four corner water maze task presented
here. (b) Paths of robot during episodes 2-5. (c) Paths of robot during 
episodes 69-72. (d) Paths of robot during episodes 91-94. The average of the
displayed paths is highlighted in red in (a). The inner box in (b), (c), and (d)
shows the distance at which obstacle avoidance is activated. The robot’s path
is logged using odometry during training and evaluation episodes. This
information is not used by the learning system.  



 

B. Forgetting  
In order to obtain better adaptability, the effect of adding 

“forgetting” to the TD system was explored, with the main 
goal being to allow the system to perform better in non-
stationary environments by reducing the hindrance of prior 
learning. The “forgetting” is based on keeping track of past 
performance, namely rewards received.  

Specifically, a “short term” reward and a “long term” 
reward are calculated based on rewards received during the 
current trial. These two rewards are then used to control the 
“forgetting” process. 

The original update equation for the weights, wi, of the TD 
system [8] is given as: 
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where α is the learning rate, δt is the TD error at time t, and ei

t 
is the eligibility trace for wi at time t. With “forgetting,” the 
update equation becomes: 
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where µ is the initial mean of the weights for the TD system, 
and fp is defined as follows: 
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Where rl and rs are the long term and short term rewards 
respectively, ε is a small positive constant, and ηf is the 
forgetting rate. 
 

 

 

 
 

Under normal circumstances, where rs ≥ rl - ε, the weight 
update is unchanged.  However, if rs < rl - ε, then the system 
effectively “forgets” (by an amount proportional to the 
difference between rl and rs) by moving all the weights closer 
to the initial mean value. 
 Fig. 9 (a-b) shows the same experiments conducted in Fig. 8 
(b-c), with the addition of “forgetting” to the TD system. As 
can be seen from the results, with “forgetting,” the TD system 
is effectively able to adapt to the new platform locations as 
though it had not undergone any previous learning, thus 
making it much more adaptable in non-stationary 
environments. 

VII. CONCLUSION 
This paper presented the results of using a biologically 

inspired TD learning approach to learn a spatial memory task 
on a physical robot, and the results of testing the adaptability 
of that approach to non-stationary environments. Experiments 
showed that the robot is able, using the TD approach, to learn 
the necessary associations between perceptual states and 
actions to successfully locate the hidden platform. 
Furthermore, experiments conducted in simulation showed 
that with the addition of “forgetting” the system is able to 
achieve good performance in non-stationary environments.    

Future work will be aimed at further investigation of the 
adaptability of the TD approach, and investigation of other 
representations of the perceptual space. 
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Fig. 9.  Performance with “forgetting” added to TD learning system. (a) Plot
of moves per episode over 1200 training episodes during which the platform 
was moved after episode 400 and episode 800.  (b) Plot of moves per episode
over 1200 training episodes during which the platform was moved after
episode 400, and then moved back to where it originally started after episode
800.  Results were averaged over 10 trials in (a) and (b). 


