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Abstract—A key question in neuroscience is how memorization @
and association are supported by the mammalian cortex. One
possible model, proposed by Valiant[10], uses sparse endngs
in a sparse random graph, but the composability of operatios
in this model (e.g. an association triggering another ass@tion)
has not previously been evaluated. We evaluate composabyli
by measuring the size of “items” produced by memorization 1
and the propagation of signals through the “circuits” created by [
memorization and association. While the association opeti@an
is sound, the memorization operation produces “items” with \

unstable size and produces circuits that are extremely seitise to
noise. We therefore amend the model, introducing an assodian
stage into memorization. The amended model preserves and \
strengthens the sparse encoding hypothesis and invites ther
characterization of properties such as capacity and interence.

I. INTRODUCTION

. . . . . . ig. 1. The sparse encoding model proposed in [10] models rdopo
A key question In neuroscience IS how memorization a cortex as a sparse random graph with directed edges, védzmie edge

association are supported by the mammalian cortex. The a weight representing its synaptic strength and each fies when the

question is complicated by the measured number, degree, &§@ming edges from firing nodes sum to a high enough weight.

synaptic strength of cortical neurons. Neurons appear to be

sparsely connected: while the number of neurons in mouse

cortex is estimated to be6 x 107 and the number of neuronsMemorization is the joining of two items} and B, to create a

in human cortex is estimated to be approximatély®[4], new itemC, such thaiC is recognized if and only if both and

their degree—the number of neurons with which each neurdnand B are recognized (an “AND” relationship). Association

synapses—is estimated to be much smaller, approximatisythe linking of two items,D and E, such that wheneveb

7800 in mouse cortex and 24,000-80,000 in human cortex[iJ.recognizedF' is recognized also (an “IF” relationship). In

At the same time, the average strength of synapses appearseither case should there be side-effects or interferemee f

be quite weak, with each estimated to effectively contebait other memorization or association relationships. Theiwaig

fraction in the range 0.003 to 0.2 of the firing threshold[1proposal includes two algorithms, JOIN and LINK, that ceeat

While some significantly stronger synapses have been redordcircuits” implementing memorization and associatiorspec-

([91, [71, [2]), weak synapses appear to predominate andesottively.

neural systems may be dependent entirely on weak synapseVhile these algorithms and the “circuits” they produce are
A model of memorization and association, using only weatvaluated in isolation in the original proposal, their com-

synapses and consistent with these parameters, has beenpgwsition (e.g. an association triggering another assooint

posed by Valiant[10]. In this model, interconnecting atati has not previously been evaluated. We empirically evaluate

neurons are modelled as a sparse random graph and “itett& model’s performance on two aspects of composition: the

to be manipulated are represented as sparse subsets of gvaplation of item size during repeated memorization and the

nodes (decisions consistent with a long history of work ompact of noise on signals propagating through memorimatio

neural networks, including [3], [6], [5], [1], [8], and manyand association “circuits.” The evaluation shows that eisso

others). In this model, an “item” represented by a set of lgra@ation is sound, but that memorization is extremely seresitiv

nodes is considered to be “recognized” when at least half tof size variation during construction and produces cigcirit

the nodes in the set are firing, so nodes may be used in mafgich signals degrade badly in the presence of any noise. We

than one item, so long as the overlap between items is sm#ierefore amend the model to abolish these sensitivities by



incorporating an association stage into memorization.

II. MEMORIZATION AND ASSOCIATION IN SPARSE
RANDOM GRAPHS @

The sparse encoding model proposed by Valiant[10] consists
of four modular components: a model of cortex as a general
or bipartite sparse random graph, representation of “itexas
disjoint or shared sparse sets of graph nodes, one-step and @
two-step JOIN algorithms that create composite items, and a
LINK algorithm that associates one item with another. This Q
section reviews the model from [10], noting which variants
are used and our implementation decisions where the otigina
model is underspecified.

A portion of cortex—either a single brain region or several
interconnected regions—is modelled as a sparse randor.grap
The graph may be a general graph withnodes (Figure 1) (a) One-step JOIN
or a bipartite graph where each componentha®des. Each
node has an expected degreand has probability = d/n of
connecting to each other node in the network with a directed .
edge. At highn and low p, the general graph and bipartite
graph behave similarly, so we will treat only the case of a
general graph, for simplicity.

Each edge has a weight associated with it, representing
synaptic strength. Each graph node is either firing or imacti .
and contains a simple finite state machine that determiges it
behavior. The level of stimulus at a node is equal to the sum
of weights on incoming edges. When this stimulus exceeds a Q
threshold (normalized to 1), the node fires unless its ctirren
state suppresses firing. Memorization and association ifise d Q
ferent base synaptic strengthgk,, and1/k,. For pragmatic Q
reasons, our empirical evaluations use one populationgésd
with multiple weights rather than multiple populations of
edges, but these are equivalent because only one set imever i
use at any time. Timing is left vague in [10], so we calculate
firing in steps, where the stimulus at a node in a given step
comes from the nodes firing in the previous step.

Memorization and association operate on “items,” which
might represent concepts or other fragments of mental.state
An item is represented by a set of graph nodes, where
r << n, and we assume the existence of a mechanism that
creates items on demand by selecting a random set of nodes.
The representation of items may be either disjoint, meaning
that each node is included in zero or one items, or shared,
meaning that each node may be included in many items.
In this paper, we consider only the shared representation,
because many more items can be allocated than in the disjoint
representation. The disjoint representation can onlycat® O Q
a maximum ofn/d items, and memorization fails when
only a small fraction of that limit has been allocated (due (c) Two-step JOIN, Step 2
to the SenS.ItIVIty discussed in the next SeCtlon)f The Sharngg. 2. The JOIN algorithm uses existing itetdsand B to create an itent'
representation also has the advantage of providing a gessiRat is recognized if and only ift and B are recognized. In one-step JOIN,
explanation for the surprising ease with which stimuli ca&n bA and B are triggered to fire simultaneously and C is the nodeg stimulate
found that produce selective responses in individual Mearofa 5, e 569, Lo e 1 200e veg s rogeeang roces
if a neuron participates in many items, it is much easier {Qermediate-state nodes that fire.
find some item that causes it to respond.
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(b) Two-step JOIN, Step 1




)/. Q . are never adjusted. One-step JOIN usds,atwice the size

of two-step JOIN. In one-step JOIN{ and B are triggered
. O simultaneously, and” is the set of nodes that fire. In two-
step JOIN, firstA is triggered, and all nodes that should fire
a instead advance to an intermediate state. NBx triggered,
only nodes in the intermediate state are allowed to fire,@nd
is the set of nodes that do fire. Execution of these “circugs”
. Q the same as construction, but using the current firing lewel f
A and B rather than triggering them, and looking@tfor the
. Q outcome. Two important notes: first a symbol cannot be joined
with itself, and second, due the statistics of the randorplyra

Q executing more than one JOIN at the same time is likely to
/. cause every node in the network to fire.

Association is implemented by the LINK algorithm, which
connects existing item® and E, so that if D is recognized

(@) LINK, Step 1 thenFE is recognized as well. LINK executes in two steps, and
Q does adjust weights (Figure 3). In the first stépis triggered
Q to fire and every edge has weightk,. The parametek,
@ is set so that at the second step nearly all nodes will have at
leastk, edges incoming from firing nodes. The weights for the

second step are all initiallg, but LINK raises them td /k,

on edges that arrive @ from firing nodes. Thus, whep is
recognized, precisely those items that have been conngxted
it by LINK will be recognized two steps later.

IIl. SENSITIVITY OF MEMORIZATION TO ITEM SIZE

E Chained memorization circuits are an area of concern for
composition because the size of the new item created by
Q JOIN depends on the size of the two items being joined,
yet also varies due to the randomness of the graph. The
Q Q original proposal notes that this variation can be expetted
be on the order of,/r, which is only a small variation in
size. When items produced by JOIN are themselves used in
Fig. 3. The LINK algorithm connects existing itenisand E so that ifD is @ memorization, however, even a small variation may have a
recognized, thetk is recognized as wellD is triggered to fire and the firing |arge impact. The size of the item created is determined &y th
e e L e et o k.47 size of the pper tailof a random distribution, and the artoun
the second-step weight to/k, on edges that arrive df from firing nodes. Of the tail above the firing threshold is extremely sensitive
variations in the mean of the distribution.
We demonstrate the importance of this effect by evaluating
If a large enough fraction of an item’s nodes are firinghe degree of sensitivity empirically. Both one-step JOhd a
then the item is considered to be “recognized;” if few arevo-step JOIN are evaluated, using parameters from 16}
firing then the item is considered to be “not recognizedI00, 000, d = 512, and the corresponding paiks, = 32, r =
In the original model, the threshold is fixed at 50%; in thi&134 for one-step JOIN and,, = 16, » = 2338 for two-step
paper we generalize this by allowing an “invalid” range thalOIN. Figure 4 shows the size of the new item created from
separates “recognized” and “not recognized” states, jgst & pair of items ranging frond.9r to 1.1r in steps of0.01r,
digital circuits have an invalid range of voltages betwdese with 100 samples for each size (10 times on 10 networks).
that represent binary “1” and those that represent binary “0SBmall variations in the size of the initial items are greatly
Memorization is implemented using the JOIN algorithmamplified in the size of the item created by the JOIN. With
which uses existing itemg and B to create a new iten’ these parameters, both one-step and two-step JOIN amplify
that is recognized if and only ifA and B are recognized. small size variations by approximately one order of magigtu
JOIN comes in one-step and two-step variants (we ignore theThe high sensitivity of JOIN to the size of the initial items
disjoint representation variants for JOIN and LINK), both omeans that chaining together even a small number of JOIN
which work by triggeringA and B to fire, then identifyingC'  operations is unstable, and that even a few iterations leads
as the set of nodes that are well stimulated by béthnd B representations that contain either zero nodes or neagly th
(Figure 2). In both cases, all edges have weighit,,, which entire graph. Figure 5 shows a three-layer network of JOIN
is set to giveC' an expected size af nodes. The edge weightsoperations, creating an itesH that only fires when all eight

(b) LINK, Step 2



Sensitivity of JOIN to item size JOIN size instability in a 3—step chain
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Fig. 5. The size sensitivity problem of JOIN is demonstrdigdhree layers g
of chained JOIN operations, compounding items A through Fbitm an item °
AH that fires only when all eight inputs are firing. Chain Step

(b) Two-step JOIN chain

of the initial items A through H fire. We evaluate this with Fi9- 8. The size of items produced by JOIN operations exsianteollapses
. s over the three-layer JOIN chain shown in Figure 5.

the same parameters as before, settirfgr the initial items
to the ideals- = 2134 for one-step JOINy = 2338 for two-
step JOIN, gathering 100 data points for each (10 times on 10 ) ]
networks). Results are shown in Figure 6. Since two-steplJofhosen, then signals will be restored as they pass through
always resulted iMAH growing to cover the whole network, cwcw_ts a_nd noise poses no Ilmlt on composablllty. Otheeyi
we also test two-step join with = 2314—one percent less the circuits are sensmve_to noise and signals can be_ ea«_;bect
nodes in the initial items—and H always collapses in size. {0 degrade, perhaps rapidly, as they pass through circuits.

Thus, although the JOIN operation is viable in isolatios, it In digital circuit design, devices are shown to be compasabl
sensitivity to the size of the items to be joined makes chaini by establishing a static discipline—a relationship betwee

JOIN operations impossible, at least as originally spetifie input and output voltages that ensures that output voltages
closer to ideal “0” and “1” values than input voltages. More

IV. NOISE SENSITIVITY IN PROPAGATING SIGNALS formally, the static discipline for a family of devices is ats
The composability of “circuits” in the sparse encodin@f voltages levelsVor < Vi < Vig < Vog. When device
model can be evaluated using the notionsttic discipline obeys the static discipline, we are guaranteed that if @liin
from digital circuit design. Transfer curves are measurawltagesV; are below the low input threshold; < V; or
for JOIN and LINK circuits, determining how the fractionabove the high input threshold > V;y, then the output of
of output nodes firing varies with respect to the fractiothe device will be below/(, if the output is a “0” and above
of input nodes firing. These transfer curves determine the g if itis a “1.” In other words, the standards for the digital
composability of signals: if appropriate noise margins ban values “0” and “1” are more stringent for outputs than for



LINK transfer curve JOIN transfer curve (both varying)
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This restoration of voltages toward the ideal damps the

effect of noise at each stage of a circuit, allowing digital
devices to be composed without bound. The farther the input
thresholds are from output thresholds, the greater theenois
margin—the amount of noise that can be tolerated at each
stage of the circuit.

The composability of JOIN and LINK circuits can be
evaluated by a similar method, since items have the boolean
values “recognized” and “not recognized,” which may be ‘ ‘ ‘ ‘ ‘ ‘
interpreted as binary “1” and “0” respectively. The fractio 0 02 04 06 08 1

; ) . Input fraction firing
f of an item’s nodes that are firing plays the part of voltage, _ ‘
with no firing the ideal “0” and all firing the ideal “1.” (b) JOIN, one input held high

For each device, we measure its transfer curve by varyigg g Transfer curves showing the envelope of fraction @pat nodes
the fraction of inputs firing from 0 to 1 in steps of 0.01, usingjring for 10 JOIN circuits as the fraction of input nodes fgirs varied. No
the parameters = 100,000, d = 512, 7 = 2134, k, = 16 and  UPPer noise margin can be established, so even minimal molseesult in

! ' ! $e significant signal degradation.
kyn, = 32 for one-step JOINk,, = 16 for two-step JOIN (from
[10]). For JOIN, we measure both the simultaneous variation

of inputs and the variation of one input while the other isdhel ) . .
The new JOIN-LINK algorithm is simply a composition

high. Each transfer curve shows the envelope of behavior for o . .
10 devices, each created on a different network. LINK ctecui©! (e €xisting one-step JOIN and LINK algorithms. Given
Xjsting items A and B, first allocate a new random item C

have good noise margins (Figure 7), but no upper noise marf

can be established for JOIN (Figure 8): even minimal noi ar the Ol_Jtqu' Use a one-step ‘]QlN on A and B, creat.ing an
will result in significant signal degradation. intermediate itemy, then LINK the itemy to C. The resulting

circuit fires C if and only if both A and B are firing, as desired

for memorization, though it takes three steps of propagatin

firings rather than one to execute. Because C is allocated
Although the original model of memorization is not viabléndependently from A and B, the JOIN-LINK algorithm does

under composition, two small modifications make it so. Theot suffer from instability in encoding size.

first is to add an association stage to the end of a memonizatio We measure transfer curves for JOIN-LINK and LINK as

circuit. This removes the size instability problem and gtees before, using the same= 100, 000, » = 2134, andd = 512,

the slope of the transfer curve. The second is to lower thegfiriand lowered firing thresholds,,, = 30 and k, = 13. The

thresholdsk,, and k, slightly, shifting the transfer curve to results (Figure 9) support a static discipline ff, = 0.5,

provide an adequate noise threshold for firing items. for =0.01, frg = 0.91, and foy = 0.99, for a noise margin
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V. AMENDED MODEL
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Fig. 9. Measured transfer curve envelopes for the amendelgimesingn =
100, 000, r = 2134, d = 512, k;, = 30 andk, = 13, show composability,
because a static discipline can be established With= 0.5, for, = 0.01,

JOIN-LINK transfer curve (both varying)
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(b) JOIN-LINK, one input held high

LINK amended transfer curve
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frg = 0.91, and foz = 0.99, for a noise margin of 8%.

of 8%. The amended model thus provides both stable encoding
size and good noise margins, allowing unlimited compasitio
with respect to construction and signal propagation.

VI. CONTRIBUTIONS

Empirical evaluation shows that the memorization opera-
tions in the sparse encoding model proposed by Valiant a@re no
composable: the size of items is sensitive to small variatio
and signals propagating through memorization circuitsalbg
badly in the presence of even minimal noise. We therefore
present an amended model, adding an association state to
memorization but preserving the basic premises of the spars
encoding model. The amended model produces circuits that
are not limited in their composition by the factors examined
in this paper. We have thus filled in an important gap in the
sparse encoding hypothesis.

Composition issues are not limited to the two we have ad-
dressed in this paper, and this work invites more investigat
along similar lines. Particularly pressing are questiobsui
the capacity of a sparse random graph to encode items and re-
lationships and about the degree to which propagating Egna
interfere with one another. Preliminary investigation gests
that the original and amended model will both perform badly
in these areas, but that once again a careful understanfling o
the problems will suggest small modifications to the model
that correct this deficiency.

Ultimately, of course, the test for the sparse encoding hode
is comparison with actual mammalian cortex. However, there
is not yet conclusive evidence to confirm or deny the two
most fundamental assumptions of the model—sparse random
graph structure and the importance of weak synapses. If the
biological data does in the end support the sparse encoding
model, the implications may be profound, for the digital
computation in the model helps to explain how low-level
neural activity might produce apparently “symbolic” highe
level cognition.
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