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Abstract— Developmental researchers investigate many pieces
of infants’ physical knowledge, e.g. the perception of causality,
occlusion or object permanence, but a theoretical framework
that would unify all these pieces, account for the most basic
phenomena and make testable predictions has not been provided
yet. Here we make an attempt to unify and explain the emergence
of causality and occlusion perception and its development in
infancy using a simple artificial neural network that derives its
representations from simplified motion detector and disparity
cells as found in the primary visual cortex. The network
accounts simultaneously for two experiments on causality and
occlusion perception and develops a representation of object
permanence during training. It also makes detailed testable
predictions for the course of development and provides an
account ofhow change occurs. We conclude that many aspects of
physical knowledge can probably be learned from the statistical
regularities of our environment while only few assumptions are
needed.

Index Terms— causality, launching, contact, solidity, occlusion,
continuity, object permanence, model, Elman network, predic-
tion

I. I NTRODUCTION

The question about the origin of knowledge is as old as
humanity itself and has been one of the major questions
pondered by philosophers. But since Jean Piaget it has also
been tackled experimentally by developmental psychologists
who investigate how human infants’ knowledge develops in
the course of their growth.

There are a few central phenomena that seem to constitute
infants’ most basic physical knowledge. Infants seem to
perceive objects as moving on connected, unobstructed paths
(continuity), as only affecting another object’s motion if and
only if they touch (contact) and that they normally do not
pass through each other or through solid surfaces (solidity).
These capacities have been suggested to be innate [13].
At some point infants learn about object permanence - the
notion that objects continue to exist even though they are
out of sight. Infants as young as 4 months have been shown
to have reached this understanding [1].

As for causality the discussion can be traced back to
Hume [3] in whose classical account the perception of
causality in simple mechanical events is the result of
repeated experiences of a constant conjunction between
two events. Michotte [10] argued that causality could be

perceived directly, for example, when one billiard ball
collides with and launches another. He believed that in order
to gain a ”causal percept” infants would at least have to see
enough ”internal structure” to segregate a launching sequence
into two movement components. Leslie [7] believed that an
innate notion of force or pressure is needed and that the
perception of cause and effect is performed by an innate
motion analysis module. Mandler [8] suggested that seeing
transfer of motion may provide the basis of infants’ early
interpretation of causal physical events and that no notions
of force or pressure are necessary. We demonstrate that
this is possible by constructing a computational model that
learns to represent launching and occlusion events by merely
observing them and detecting statistical regularities in them.
We show that this model explains one of the fundamental
experiments on the perception of causality in infants [6]
while no innate force notions or modules are needed.

The model is an artificial neural network that is trained
to predict its next inputs. We are going to model two
experiments on causality and occlusion perception that rely
on the so called habituation paradigm, e.g. experimenters
repeatedly show a visual stimulus to an infant and measure
the time it looks at it. As trials increase the looking time
drops which is referred to as habituation, i.e. the infant gets
”bored”. After this phase usually two test stimuli are shown
and the looking time is measured again. If the looking time
increases again (dishabituation) then a stimulus is interpreted
to be ”novel” or ”surprising” to the infant.

In our model the network’s error in predicting its next
input is used to model the infant looking time since novelty
can be seen as a prediction failure. Prediction learning has
been highlighted by a number of developmental theorists,
e.g. [2], but was not referred to as a model for looking
time. Schlesinger and Young [12] used a prediction network
as a model of looking time but they did not pre-train their
network which we consider essential in this kind of modeling
(see Sect. II-B). [9] trained a network to predict occlusion
events but the network is modularized and largely constructed
by hand (including object recognition modules etc.) which
makes it less parsimonious than our model. The work of
[11] comes closest to our work but their model was trained
exactly for the one task is was supposed to accomplish:
representing an occluded object at a fixed position whereas
in our model neither the position of the objects nor the sort
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of task (occlusion or launching) is prespecified. Specifically,
our model is the first to account for both occlusion and
causality data.

II. M ETHODS

A. General architecture

Fig. 1. The Elman network

We use a simple recurrent network, also known as the
Elman network [2]. It consists of four layers of artificial
neurons, named input, hidden, output and context layers,
respectively (Fig. 1). The inputs to units in the hidden and
output layers are weighted sums of the responses,Xi, C ′

j , Yj ,
from units at previous layers. The outputsYj and Zi of the
units are a Fermi function of the input:

Yj =

1 + exp

−
M∑
i=0

vijXi +
N∑

j′=1

uj′jCj′

−1

(1)

and

Zi =

1 + exp

−
N∑

j=0

wjiYj

−1

(2)

wherevij , uj′j and wji are the weights. Every hidden and
output unit has an additional constant inputX0 andY0 equal
to 1. The weightsv0j andw0i of these supplementary inputs
act as threshold values for each unit and are also learned.
The context layer derives its activity from the hidden layer
by copying its activity at each sweep of calculation:Cj := Yj .
The Elman network is presented a temporal series of inputs
Xi(t), Xi(t + 1), Xi(t + 2), ... and its task is to learn from
this sequence and predict the next inputXi(t+1). We trained
the network with the standard backpropagation algorithm
minimizing the sum of the squares of the difference between
the outputZi(t) and the next inputXi(t + 1). In our model
we relate the prediction error

E(t) ≡
M∑
i=1

|Zi(t− 1)−Xi(t)| (3)

to the looking time in experiments with infants.

Our model is constructed to predict occlusion and launching

events. Therefore, we need to represent motion and depth. In
order to do so we split up the input layer into three maps,
the ”motion detectors” (first 7 units), ”disparity” units (next
7 units) and ”novelty” units (next 14 units) that represent
the novelty of the environment. Fig. 2a) shows the inputs to
the network at a launching event. The motion detector map
is only active for a moving object (pixel). A unit is set to
1 if motion is present (in any direction) and to 0 otherwise.
In order to predict occlusion events successfully one needs
to distinguish merely three depth relations: farther away,
same distance and closer than the object participating in
the occlusion event. Therefore, units in the depth map can
have three values, 0.0, 0.5 and 1.0, respectively. In Fig. 2g)
we see an example of an occlusion event. The idea of the
novelty map is that everything is new to an infant when it
comes to the laboratory which leads to large looking times
at first trials (see Sect. II-B for details).

B. Training

The network was trained in three phases: the pre-training,
the habituation and the test phase. In real habituation
experiments the infant is habituated to some repeating
stimulus until the looking time drops and the habituation
is terminated. Then the infant is presented test stimuli.
Our model was trained in a similar way except that a
pre-training phase is needed. The pre-training models the
visual experience of the infant with the world before coming
to the laboratory. Without pre-training the network would
only learn what is presented during the habituation phase
from which no interesting results can be expected.

We pre-trained the network in the following way. A
freely moving pixel moved back and forth at depth 0.5 as
in Fig. 2h). This motion was halted and reinitiated with
probability of 5% at each time step. Another (but non-
moving) pixel was added or removed with probability of 1%
(at each time step) at a random position. When this second
pixel was present, its depth was chosen to be 0.5 or 1.0 with
equal probability, so that the pixel either became an obstacle
or an occluder. In the occluder case the stimuli were like
in Fig. 2g). In the obstacle case a launching event occured
when the first (moving) pixel collided with the second one
(see Fig. 2a)). During pre-training the occluder or obstacle
could be at any position in the visual field while during the
habituation and test phases the stimuli were exaclty those
shown in Fig. 2. The stimuli during the pre-training were
constrained to ”possible” ones, i.e. to stimuli that we would
expect to occur naturally like direct launching, occlusion
or just free motion. By doing this we model the infant’s
pre-experimental experience with the world. Varying the
pre-training time allows us to look inside the development
of the model - therefore, the pre-training time corresponds to
the age of the infant. The novelty units were set to a random
but constant binary vector. The network was pre-trained for
106 time steps and the weights were saved every 1000 time
steps. Then we performed the experiments described below
using these saved weights that represent the developmental
progress of the network.
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Fig. 2. Habituation (a,b,c,g) and test (d,e,f,h,i) stimuli. Motion detector and disparity layers are displayed on top of each other, textured pixels indicating
motion detector activity and gray scale values indicating disparity cell activity. Note that whenever a motion detector is active the corresponding disparity
cell’s activity is 0.5. a) direct launching- first pixel launches the second pixel. b)delayed launching- second pixel moves off 2 time steps after collision.
c) launching-without-collision- second pixel moves off without being touched. d)no-reaction- first pixel collides with second pixel which fails to move. e)
no-prior-movement- second pixel moves without prior movement of first pixel. f)no-reaction-no-collision- first pixel stops before touching the second pixel
which remains inert. g)occluded trajectory- pixel moves back and forth behind an occluder. h)continuous trajectory- pixel moves freely without occlusions
or collisions. i)discontinuous trajectory- interrupted pixel motion

III. PERCEPTION OF CAUSALITY: MODELING

EXPERIMENT 1 IN [6]

A. Description of the original experiment

Leslie [6] tested how 4.5- and 8-month-old infants perceive
launching events. Infants were habituated to a cube starting
to move and launching another cube which starts to move
with the same speed as the first one while the first one
stops moving after the collision (direct launching). Another
group of infants was habituated to the same stimuli except
that the start of the motion of the second cube was delayed
(delayed launching). A third group of infants was presented
a launching event without the first cube touching the second
one. It stopped at some distance before but the second
cube started to move off immediately just as if it had been
launched (launching without collision). All infants were
tested with basically two kinds of events: first cube moving,
colliding with the second, stopping but without any reaction
of the second cube (no-reaction). Alternatively, the second
cube just started to move by itself without prior motion of
the first cube (no-prior-movement). In Fig. 2a) - f) we see
how these events have been presented to the neural network.

Leslie wanted to know whether the infant perceives the
first cube as causing the second cube to move. The idea
was that introducing a temporal or spatial gap between the
two cubes would make the infants perceive two independent
motions: one cube starting, moving, and stopping and then
the second one doing the same - which are basically the test
stimuli. Therefore, Leslie hypothesized that infants who were
habituated with the delayed launching or launching-without-
collision sequence would dishabituate less to the test stimuli
than the infants exposed to the direct launching sequence.

B. Modeling procedure

After the pre-training the network was trained repeatedly
with the direct launching stimulus in Fig. 2a) (alternately
b) or c)) for 1000 time steps (habituation phase). Then, the
total prediction error which is the sum of the prediction
error over the 18 time steps of a stimulus (see Fig. 2) was
calculated. After habituation, the test stimuli were presented
once and the prediction error was calculated again. The
direct and delayed launching habituations were tested with
the no-reaction and no-prior-movement stimuli, Fig. 2d)
and e), respectively, whereas the launching-without-collision
habituation was tested with the no-reaction-no-collision and
the no-prior-movement stimuli, Fig. 2f) and e), respectively.
During the habituation and test trials the novelty units were
switched to a different binary random but constant vector
indicating the novelty of the laboratory environment (the
novelty units don’t play any role in this experiment but are
important for the control case in the occlusion experiment
below).

C. Results

The whole simulation was run 30 times. In Fig. 3 the results
together with the results of the original experiment are shown.

Experimental result:
Looking times declined significantly from first to last
habituation trials.
Model account:
During the habituation phase the stimulus was repeated over
and over (1000 / 18≈ 56 trials). Thus, the network learned
to predict the stimulus better, i.e. its prediction error dropped
with time. As we relate the prediction error to the looking
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Fig. 3. Dishabituation time and error in a) experiment and b) model. Note
that it can take negative values since it denotes a difference between looking
times/errors.

time of infants this accounts for this result.
Experimental result:
The group habituated with the direct launching stimulus
increased its looking time significantly more than the group
habituated with delayed launching or launching-without-
collision.
Model account:
Since the network was exposed to direct launching stimuli
during pre-training already, there was not much to learn
during the direct launching habituation. On the contrary,
the other two habituation stimuli were more difficult to
learn. Thus, the prediction errors of the last habituation
trials were lowest in the direct launching case. Therefore,
the networks ”dishabituation” to the test stimuli was higher
after direct launching as compared to the other habituation
cases. Unfortunately, this result doesn’t fit the data for the
no-prior-movement test since the self-starting second object
is equally surprising after each type of habituation.
Experimental result:
The no-prior-movement stimulus attracted significantly longer
looking times than the no-reaction stimulus, regardless of
the group.
Model account:
During habituation the network learned to expect the first
pixel to start moving which happens in the no-reaction test

but does not happen in the no-prior-movement test. Thus, in
the no-prior-movement test, the network keeps predicting the
first pixel to start moving which does not happen and yields
a prediction error.

D. Model predictions

Although Leslie did not find any significant age effects, we
see in his results, Fig. 3a), that the mean dishabituation time is
higher for older infants (which could be random of course).
But as we see in Fig. 3b) our model predicts that overall
dishabituation times increase with age which is due to the
fact that the habituation stimuli can be learned quicker and
better after a long pre-training. Another prediction is that the
direct launching results should be more similar to the delayed
launching and launching-without-collision results for younger
infants. This is due to the fact that the dishabituation errors
are higher in the direct launching condition only because of
prior exposure to direct launching stimuli during pre-training.
But if the pre-training is short (young infants) then this effect
vanishes as can be seen in Fig. 3b).

IV. PERCEPTION OF OCCLUSION: MODELING

EXPERIMENT 1 IN [4]

A. Description of the original experiment

The experimenters tested 4- and 6-month-old infants and
discovered an interesting effect in occlusion perception. They
habituated the infants with a ball oscillating back and forth
behind an occluder. Then two kinds of test displays were
presented, both without any occluder: the first test display
showed the ball continuously oscillating and the second test
display showed the ball oscillating discontinuously, i.e. they
used the same display as in the habituation but they removed
the occluder such that it appeared that the ball oscillates
but disappears behind an invisible occluder and reappears
at its other end again. A separate control group was shown
the same test stimuli but without prior habituation in order
to control for some baseline preference for one of the test
displays. In Fig. 2 we see the corresponding habituation, g),
and test stimuli, h) and i), that we used in our model.

If infants perceive the ball as continuing to move behind
the occluder during habituation then they should generalize
their habituation to the continuously moving ball and show
increased looking time at the discontinuous test display.
However, if infants just learn the motion of the ball ”by
heart” then they should generalize this perception to the
discontinuous case which is identical to the ball’s motion in
the habituation display. Thus, they should dishabituate more
to the continuous display. The experimenters found that
4-month-olds show a preference for the continuous display
but 6-month-olds dishabituate more to the discontinuous
display (Fig. 4a)).

B. Modeling procedure

After pre-training the network was habituated repeatedly
with the stimulus in Fig. 2g) for 1000 time steps. After
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habituation the network was tested again once with the two
stimuli Fig. 2h) and i) and the respective prediction errors,
E

exp
cont and E

exp
discont were calculated. The prediction error

was also calculated for the last habituation trial,E
exp
baseline,

in order to be able to calculate the dishabituation time later.

Just as in the real experiment we also modeled the
situation of the control group, i.e. we took the pre-trained
weights, tested them directly without prior habituation and
calculated again the respective prediction errorsEcontrol

cont
andEcontrol

discont. In order to assess the dishabituation errors we
presented the occlusion display 2g) once to the pre-trained
network having still the old novelty units (see Sect. IV-C
for the role of the novelty units). This prediction error,
Econtrol

baseline, reflects how the network had learned so far.

Finally, we calculated the ”looking preferences”,P ,
for the experimental and control conditions, respectively.

P ≡
Ediscont− Ebaseline

(Econt− Ebaseline) + (Ediscont− Ebaseline)
(4)

The difference between the test error and the baseline error
(last habituation error) is what we call the dishabituation
error which is analogous to the dishabituation time in real
experiments. The original experiment the researchers used
the same formula for the preference apart from the baseline
values, i.e. they took the raw looking times to the test stimuli.

C. Results

The whole simulation was run 30 times. In Fig. 4 the
model as well as the experimental results are shown.

Experimental result:
4-month-old show a preference for the continuous display
whereas 6-month-olds prefer the discontinuous display.
Model account:
In Fig. 4 we see that the preference first goes down to
about 0.43 after 35000 trials and then increases until is
saturates at0.57 as a function of the pre-training time steps.
Since the pre-training time corresponds to the infant age
we get a similar result as observed experimentally. The
preference curve can be explained in the following way:
After 0 time steps the network did not predict any output at
all. Therefore, the test displays are equal to the errors which
are both large and to a preference around0.5. After 35000
time steps the network learned to predict the trajectory of
the pixel except at the occlusion position to some extent.
It basically learned the pixel motion ”by heart”. This is the
same case as before but only with smaller errors in total
such that the failure to predict the continuous trajectory at
the occlusion position gained more weight (preference for
the continuous display increased). After the network has
been exposed long enough to pre-training stimuli it learned
to predict continuous trajectories and also that a trajectory
is suppressed whenever there is an occluder. Therefore the
network predicts the continuous display successfully but fails
to predict the discontinuous one since it expects the pixel

Fig. 4. Development of looking preferences for the continuous vs. discon-
tinuous displays in a) experiment and b) model.

to move on in absence of an occluder (preference for the
discontinuous display).
Experimental result:
The control group showed no preference for either test
display.
Model account:
This is due to the general novelty of the laboratory
environment. As the network was shown test stimuli without
prior habituation it could not learn the value of the new
novelty units which increases the total prediction error. Of
course the network did have a baseline preference for the
discontinuous (”unnatural”) display after a long pre-training
time. But this difference was small as compared to the
prediction errors of the novelty units and reduced the total
preference to around 0.5. Therefore we suspect that there may
be a baseline preference also in infants but the novelty of the
laboratory environment makes any preference non-significant.

Object permanence
In contrast to real experiments with infants we can examine
how the system achieves its performance. First it learns to
predict freely moving pixels in either direction. But then,
when an occluder is present, it simply learned to suppress
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the output of the motion detector layer at the position of
the occluder. This is done by a few hidden units that are
mainly driven by the activity of the disparity layer cell that
represents the existence of an occluder. Whenever these
hidden units are active they suppress the activity of the
motion detector output layer at the same position where the
occluder occurred by feeding in strongly negative connection
weights to them. In this way the other hidden layer unitsdo
predict a moving pixel to continue its motion at the occluder
position but the actual output of this prediction is suppressed
by the former hidden units. Therefore, the network continues
to represent the motion of the pixel even though there is an
occluder which is exactly what object permanence means.
We did not foresee this capacity of the network to develop,
it just emerged as a solution to the occlusion problem.

D. Model predictions

As we can see from Fig. 4b) the model predicts that
infants’ preference should be similar to the model curve if
the experiment will be performed for other ages as well.

V. D ISCUSSION

Leslie tested how infants perceive two object movements,
one causing the other to move. They found that the
perception of ”causality” is disrupted if a temporal or a
spatial gap is introduced between cause and effect. A gap
would supposedly lead to the perception of two separate,
independent movements whereas a direct launching is
supposed to be perceived as two conjoined movements.
In the model there are no two separate movements. There
are just sequences of input vectors. But the model learned
that whenever a pixel approaches and touches a resting
pixel it stops and makes the latter move in the same
direction. Specifically, it learned that the second one moves
off immediately (direct launching). Therefore, the model
”dishabituates” more when presented a no-reaction test as
compared to the condition where it has been habituated to
delayed launching. Thus, there is no need for innate force
notions of motion analysis modules as has been proposed
by Leslie [7] whose experiment we modeled. Our model
accounts for his data while suggesting that causality can
be learned by merely observing the visual environment,
registering statistical regularities and trying to predict them.

In the occlusion experiment [4] the researchers wanted
to know whether infants are able to perceive a continuous
trajectory although partially occluded. They found that
6-month-olds seem to perceive the trajectory veridically but
4-month-olds do not - they rather seem to perceive two
distinct sections of the trajectory. This makes sense with
regard to our model. Before learning enough about the
continuity of a trajectory the model/infant can not know that
it must be continuing behind an occluder. Only after being
able to successfully predict a free trajectory the road is free
to follow an object behind an occluder with the ”mind’s
eye”. This is exactly what happened in the model and object
permanence emerged as discussed above.

In summary, we presented a simple framework - a network
trying to predict its future inputs - that was able to develop
representations for causality and occlusion perception as well
as object permanence. It has learned about the continuity
of object motion, about solidity and reaction of objects
to contact. Therefore, there is no need to postulate innate
principles as had been suggested by [13]. In our model we
show that all these properties can be simply derived from
statistical properties of visual input sequences.

One drawback of the model is that it uses backpropagation
of an error signal which is not biologically plausible if we
want the framework to be a model of the infant brain. This is
certainly a weakness but can be overcome by using a more
plausible network, e.g. a dynamic reservoir network with
spiking neurons that have been shown to be able to perform
prediction tasks [5].

A major topic of future work will be to provide the
model with an active representation of occluded scenes.
Although this model shows object permanence, i.e. it
represents occluded inputs, it cannot do so for more than
one time step. Beyond that we also hope to extend our
explanations to other important phenomena like object unity
and perception of support and containment.

REFERENCES

[1] R. Baillargeon,Object permanence in 3 1/2- and 4 1/2-month-old infants,
Developmental Psychology, vol. 23, no. 5, pp. 655-664, 1987

[2] J.L. Elman,Finding structure in time, Cognitive Science, vol. 14, pp.
179-211, 1990

[3] D. Hume, A treatise of human nature, Ed. L A Selby-Bigge (Oxford:
Clarendon Press), 1740/1978

[4] S.P. Johnson, J.G. Bremner, A. Slater, U. Mason, K. Foster, A. Cheshire,
Infants’ perception of object trajectories, Child Development, vol. 74,
pp. 94-108, 2003

[5] A. Lazar, G. Pipa, J. Triesch,Fading memory and time series prediction
in recurrent networks with different forms of plasticity, Neural Networks,
vol. 20, pp. 312-322, 2007

[6] A.M. Leslie, The perception of causality in infants, Perception, vol. 11,
pp. 173-186, 1982

[7] A.M. Leslie, ToMM, ToBY, and Agency: Core architecture and domain
specificity In L.A. Hirschfeld & S.A. Gelman (Eds.),Mapping the
mind: Domain specificity in cognition and cultureNew York: Cambridge
University Press. 1994

[8] J.M. Mandler,The foundations of mind. Origins of conceptual thought,
Oxford Series in Cognitive Development, 2004

[9] D. Mareschal, K. Plunkett, P. Harris,A computational and neuropsycho-
logical account for object-oriented behaviors in infancy, Developmental
Science 2:3, pp. 306-317, 1999

[10] A. Michotte, The perception of causality, (New York: Basic Books),
1963

[11] Y. Munakata, J.L. McClelland, M. H. Johnson, R. S. Siegler,Rethinking
infant knowledge: Towards and adaptive process account of successes
and failures in object permanence tasks, Psychological Review, vol. 104,
no. 4, pp. 686-713, 1997

[12] M. Schlesinger, M.E. Young,Examining the role of prediction in
infants’ physical knowledge, In Proceedings of the Twenty-fifth Annual
Conference of the Cognitive Science Society (Boston, MA, USA), pp.
1047-1052, 2003

[13] E. Spelke,Initial knowledge: six suggestions, Cognition, vol. 50, pp.
431-445, 1994


