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Abstract—Does attention have relevance for visual recognition 
and if so, under what circumstances? Is there a particular role (or roles) 
for attentive processes? These are not so simple to answer. Attention, 
if used at all in computer vision, has traditionally played one or both of 
the following roles: where to look next (or selection of region of 
interest), or top-down task influence on visual computation. In this 
paper, I argue that these are only two of the possible roles. Attention is 
also closely linked to binding and it is the triad of attention, binding 
and recognition that go hand in hand for non-trivial visual recognition 
tasks. This paper describes a set of four novel binding processes that 
employ a variety of attentive mechanisms to achieve recognition 
beyond the first feed-forward pass. The description is at a conceptual 
level with many pointers to papers where details may be found. 
 

Index Terms—attention, recognition, selective tuning, human 
vision, visual feature binding 

I. INTRODUCTION 

Visual attention, recognition, and binding command a large, 
conflicting literature. For example, the nature of attentional 
influence has been debated for a long time. Among the more 
interesting observations are those of James’ classic 1890 
phrase [1] everyone knows what attention is juxtaposed with 
that of Pillsbury who in 1908 wrote [2] attention is in disarray 
and Sutherland’s 1998 comment [3] after many thousands of 
experiments, we know only marginally more about attention 
than about the interior of a black hole. Within all of the 
current viewpoints, the only real constant seems to be that 
attention seems to be due to inherent limits in processing 
capacity in the brain [4]. But this does not constrain a solution. 
Even if we agree on a processing limit, how does it lead to the 
brain mechanisms that produce the observed phenomena? 

We suggest that the terms attention, recognition and binding 
have become so loaded that they mask the true problems; each 
may be decomposed into smaller, easier problems. This paper 
suggests that considerations of time course can help carve 
seemingly monolithic problems into bite-sized pieces. 
   Many think visual attention needs an executive to allocate 
resources. Although the cortex exhibits substantial plasticity, 
dynamic allocation of neurons seems outside its capability. 
Suppose instead that the visual processing architecture is 
fixed, but can be tuned dynamically to task requirements: the 
only remaining resource that can be allocated is time. How can 
this fixed, yet tunable, structure be used over periods of time 
longer than one feed-forward pass?  
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 Models with good performance of this first pass have 
appeared with  hints about what happens next (e.g. [5,6,7]).  
With the goal of developing a computational theory and model 
of vision and attention that has both biological predictive 
power as well as utility for computer vision, this paper 
proposes that by using multiple passes of the visual processing 
hierarchy, both bottom-up and top-down, and using task 
information to tune the processing prior to each pass, we can 
explain the different recognition behaviors that human vision 
exhibits. By examining in detail the basic computational 
infrastructure provided by the Selective Tuning model and 
using its functionality, four different binding processes - 
convergence binding and partial, full and iterative recurrence 
binding - are introduced and tied to specific recognition tasks 
and their time course. The key is a provable method to trace 
neural activations through multiple representations from 
higher order levels of the visual processing network down to 
the early levels [4,8-12]. It is important to note that this tracing 
mechanism relies on a top-down maximum operation; as such 
it is inherently incompatible with the feed-forward max 
operations that most current models employ and is thus clearly 
distinguished from those. It should be emphasized that the 
experimental evidence against a feed-forward maximum 
operation is overwhelming1. The majority of studies that have 
examined responses with two non-overlapping stimuli in the 
CRF have found that the firing rate evoked by the pair is 
typically lower than the response to the preferred of the two 
presented alone, inconsistent with a max rule [13-20]. 
Additional studies have found the response to the preferred 
stimulus changes when presented along with other stimuli, a 
pattern inconsistent with a max operation [21,22]. A 
theoretical argument may also be made against a feed-forward 
max using the equivalence conditions between relaxation 
labeling processes and max selection [23], and especially 
considering the role of lateral processes in vision [24]. Lateral 
interactions necessitate a closer look at time course issues. It 
has been observed that most V1 response increases due to 
lateral interactions seem to occur in the latter parts of the 
response profile; this hints that lateral interaction takes extra 
time to take effect with V1 responses continuing until about 
300ms after stimulus onset [25]. A single feed-forward pass 
ignores all but the first few V1 spikes. 

II. DEFINING VISION SUB-TASKS 
Efforts to develop a computational theory of human vision 

must be informed by experimental observations of human (but 
also non-human primate) visual performance. Consequently, 
computational models of attention, recognition and binding 
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should be closely tied to the experiments that attempt to 
discover their characteristics within human vision; yet, one 
currently sees the terms quite arbitrarily used, especially in the 
computational vision literature. Macmillan and Creelman 
provide good definitions for many aspects of recognition and 
we can use these as a starting point 2 [26]. 

One-interval experimental design involves a single stimulus 
presented on each trial. Between trials visual masks are used 
to clear any previous signal traces. Discrimination is the 
ability to tell two stimuli apart. The simplest example is a 
Correspondence experiment in which the stimulus is drawn 
from one of two stimulus classes and the observer has to say 
from which class it is drawn. This is perhaps the closest to the 
way much of modern computer vision currently operates. A 
Detection task is where one of the two stimulus classes is null 
(noise) and the subject needs to choose between noise and 
noise + signal and the subject responds if he sees the signal. In 
a Recognition task neither stimulus is noise. More complex 
versions have more responses and stimuli. If the requirement 
is to assign a different response to each stimulus, the task is 
Identification. If the stimuli are to be sorted into a smaller 
number of classes - say, M responses to sort N stimuli into 
categories - it is a Classification task. The Categorization task 
requires the subject to connect each stimulus to a prototype, or 
class of similar stimuli (cars with cars, houses with houses). 
The Within-Category Identification task has the requirement 
that a stimulus is associated with a particular sub-category 
from a class (e.g., bungalows, split-level, other house types). 
 In the Same-Different task a pair of stimuli is presented on 
each trial and the observer must decide if its two elements are 
the same or different.  For the Match-to-Sample task, three 
stimuli are shown in sequence and the observer must decide 
which of the first two is matched by the third. Odd-man-out is 
a task where the subject must locate the odd stimulus from a 
set where all stimuli are somehow similar while one is not. 
Additionally, responses can vary: verbal, eye movement to 
target, the press of a particular button, pointing to the target, 
and more. The choice of response method can change the 
processing needs and overall response time.  
 More complex designs are also used; the point here is not to 
review all possibilities. Rather, the point is to present the 
definitions that we use in this paper. Further, if computational 
theories wish to have relevance to human vision, they need to 
consider such well-defined experimental procedures for each 
task when comparing their performance to experimental 
observations.  It just does not seem right to take elements of 
experimental observations, model them, and then subject them 
to verification using different (sometimes wildly so) 
conditions and expect the comparison to be valid. 
   The need for a subject to respond leads us to define a new 
task that is not explicitly mentioned in Macmillan and 
Creelman, the Localization task. In this task the subject is 
required to extract some level of stimulus location information 
in order to produce the response requested by the 
experimenter. In fact, this may be considered as an implicit 
sub-task for any of the standard tasks if they also require 
location information to formulate a response. Its importance 
                                                             
2 I thank Allison Sekuler and Patrick Bennett for this pointer. 

will become apparent later in the paper. Throughout the paper, 
any of the above tasks that also include localization will be 
denoted by adding a superscript “L” to the task name. 
 Prior to performing any of the above tasks, subjects are 
provided with knowledge of the experiment, what to expect in 
terms of stimuli, what responses are required, and so on. In 
other words, subjects are ‘primed’ in advance for their task 
[27]. Thus, in any model of vision, the first set of 
computations to be performed is priming the hierarchy of 
processing areas. Task knowledge, such as fixation point, 
target/cue location, task success criteria, and so on must 
somehow be integrated into the overall processing; they tune 
the hierarchy. It has been shown that such task guidance must 
be applied 300 to 100ms before stimulus onset to be effective 
[28]. This informs us that significant processing time is 
required for this step alone, a sufficient amount of time to 
complete a top-down traversal of the hierarchy before any 
stimulus is shown. This reflects one of the usual uses of 
attention referred to in the abstract. 

III. ATTENTION AND BINDING 

   Among the most misused and misunderstood concepts in 
perception are binding and attention. For the purposes of this 
paper, some concreteness is required. 
 The rationale for attentive processes is almost universally 
presented as a capacity limit with respect to processing power 
in the brain. Capacity limits naturally translate to 
considerations of computational complexity, because that is 
the discipline that examines the cost to achieving solutions to 
a problem in terms of a processing systems’ capacity [4]. 
Problems are cast as search through a space of possibilities. In 
perceptual science, attention is often thought of as selection of 
portion of the input for preferential processing. It is really 
much broader and we maintain a view of attention as a set of 
mechanisms that optimize the search processes inherent in 
vision [29,30], a perspective that follows immediately from 
the capacity discussion above. These search mechanisms take 
many forms; perhaps the mixing of these many forms within 
any single experimental paradigm is a reason for why attention 
seems so inscrutable. Some search forms are: selection, 
(choosing from many); search space reduction (eliminating 
some of the possibilities when faced with a large search 
space); suppressing (improving signal-to-noise by reducing or 
eliminating the effect of one signal on another). There are 
several specific mechanisms within each category, many of 
which appear throughout this paper. Others include choice of 
world or task model, choice of viewpoint, and more [29,30]. 
 A great deal of effort has gone into the discovery and 
elaboration of neural mechanisms that extract meaningful 
components from images in the belief that these components 
form the building blocks of perception and recognition. The 
problem is that corresponding mechanisms to put the pieces 
together again have been elusive. Current models develop 
representations of an image by proposing feature sets of 
varying complexity then resort to a classifier to make sense of 
these representations [5,6]. In Cognitive Science, this 
“Humpty-Dumpty” like task has been called the binding 
problem [31].  Binding is usually thought of as taking one sort 
of visual feature, such as a shape, and associating it associated 
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another feature, such as location, to provide a unified 
representation of an object. Such explicit association is 
important when more than one visual object is present, in 
order to avoid incorrect combinations of features belonging to 
different objects, otherwise known as “illusory conjunctions” 
[32]. The binding literature is large; no attempt it made here to 
review it due to space limitations (see [33]). 
   Classical demonstrations of binding in vision seem to rely 
on two things: the existence of representations in the brain that 
have no location information, and, representations of pure 
location for all stimuli. However, there is no evidence for a 
representation of location independent of any other 
information. Similarly, there is no evidence for a 
representation of feature without a receptive field. 
Nevertheless, location is partially abstracted away within a 
hierarchical representation as part of the solution to 
complexity [4]. A single neuron receives converging inputs 
from many neurons and each provides input for many neurons. 
Precise location is lost in such a network of diverging feed-
forward paths yet increasing convergence onto single neurons. 

IV. CONNECTING RECOGNITION, ATTENTION AND BINDING 

How is the right set of pathways through the visual processing 
network ‘selected’ and ‘bound’ together to represent an 
object? A novel set of four different binding processes are 
introduced that are claimed to suffice for solving the kinds of 
recognition tasks described above. These are organized along 
the time dimension, i.e., the processing time each requires and 
the latency from stimulus onset observed for each 
   The first stage (leftmost element of Fig. 1), shows the 
priming stage. The attention processes involved include: 
suppression of task irrelevant features, stimuli or locations, 
and imposing the selectivity of a location cue or of a fixation 
point. The selection of task model and success criteria must 
also be completed. Then, the stimulus can be presented (the 
second element of Fig. 1). 
   The third element of Fig. 1 represents the one-interval 
Discrimination Task as long as no location information is 
required for a response (i.e., correspondence, detection, 
recognition, categorization, classification). Detecting whether 
or not a particular object is present in an image seems to take 
about 150ms [34]. The object recognition models cited 
throughout this paper as examples of modern recognition 
theories fall squarely within this task. This kind of ‘yes-no’ 
response can be called ‘pop-out’ in visual search with the 
added condition that the speed of response is the same 
regardless of number of distracters [35]. The categorization 
task also seems to take the same amount of time [36,37]. 
Interestingly, the median time required for a single feed-
forward pass through the visual system is about 150ms [38]. 
Thus, many conclude that a single feed-forward pass suffices 
for this visual task.  This first feed-forward pass is shown in 
the figure emphasizing the feed-forward divergence of neural 
connections and thus stimulus elements are spatially ‘blurred’ 
progressively more in higher areas of the hierarchy. 
 To provide more detail about a stimulus, such as for a 
within-category identification task, additional processing time, 
65ms or so, is needed [36,37]; this is represented by the fourth 
from the left element of Figure 1. If the highest levels of the 

hierarchy can provide the basic category of the stimulus, such 
as ‘bird’, where are the details that allow one to determine the 
type of bird?  The sort of detail required would be size, color, 
shape, and so forth. These are clearly lower level visual 
features and thus they can only be found in earlier levels of the 
visual hierarchy. These can be accessed by looking at which 
feature neurons feed into those category neurons. One way to 
achieve this is to traverse the hierarchy downwards, beginning 
with the category neuron and moving downwards through the 
needed feature maps3. This downward traversal is what 
requires the additional time observed. The extent of downward 
traversal is determined by the task, that is, the aspects of 
identification that are required. It is interesting to consider an 
additional impact of a partial downwards traversal. This 
traversal may be partial not only because of the task definition 
but also when full traversal is interrupted and not allowed to 
complete either because new stimuli enter the system before 
there is enough time for completion or not enough time is 
permitted due to other tasks. This results in the potential for 
localization errors and perhaps the well-known illusory 
conjunctions. These tasks will be termed Identification Tasks. 
  If additional localization is required for description or a 
motor task, (pointing, grasping, etc.), then the top-down 
traversal process must be allowed to sufficiently complete and 
additional time is required. These are the DiscriminationL 
Tasks, or simply, Localization Tasks. How much time? A 
lever press response seems to need 250-450ms in monkey 
[42]. During this task, the temporal pattern of attention 
modulation shows a distinct top-down pattern over a period of 
35 - 350ms post-stimulus. The ‘attention dwell time’ needed 
for relevant objects to become available to influence behavior 
seems to be about 250ms [43].  Pointing to a target in humans 
seems to need anywhere from 230 to 360ms [44,45]. Still, 
none of these experiments cleanly separate visual processing 
time from motor processing time; as a result, these results can 
only provide an encouraging guide and further experimental 
work is needed. Still, it seems that behavior, i.e., an action 
relevant to the stimulus, requires some degree of localization. 
The location details are available only in the early layers of the 
visual processing hierarchy because that is where the finer 
spatial resolutions of neural representation can be found. As a 
result, the top-down traversal initiated for the Identification 
Task must reach these early layers as shown in Fig. 1 (second 
element from the right). Examples, including difficult cases of 
segmentation of motion-defined form, are in [10,11,12]. 
  The Extended Discrimination Task includes two-or-more 
interval designs [26], visual search, odd-man-out, resolving 
illusory conjunctions, determining transparency, recognizing 
objects in cluttered scenes, any task requiring sequences of 
saccades or pursuit eye movements, and more, e.g., 
[32,35,46,47]. The rightmost element of Fig. 1 depicts the start 
of a second feed-forward pass to illustrate this. It is likely that 
several iterations of the entire process, feed-forward and 
feedback, may be required to solve difficult tasks. 

                                                             
3 This idea appeared first in Milner’s 1974 paper [39], was used in Fukushima’s 

1986 attentive NeoCognitron [40], and appears in the 1997 Reverse Hierarchy Model 
of Ahissar & Hochstein [41]. Within the Selective Tuning model, it was first described in 
1993 [8], with accompanying details and proofs in 1995 [9]. Only NeoCognitron and 
Selective Tuning provide realizations; otherwise, the two differ in all details. 
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   The following sections relate each of these recognition 
stages to a specific binding process. These binding processes 
have been described elsewhere [48].  

A. Convergence Binding 
   Convergence Binding achieves the Discrimination Task via 
hierarchical neural convergence, layer by layer, in order to 
determine the strongest responding neural representations at 
the highest layers of the processing hierarchy. The attention 
process involved is search for maximum response. This feed-
forward traversal follows the task-modulated neural pathways 
through the ‘tuned’ visual processing hierarchy. This is 
consistent with previous views on this problem [49,50].  This 
type of binding will suffice only when stimulus elements that 
fall within the larger receptive fields are not too similar or 
otherwise interfere with the response of the neuron to its ideal 
tuning properties.  
 Convergence binding requires that the image, a) contains no 

more than one copy of a given feature each at different 
locations; b) contains no more than one object/event each at 
different locations; and, c) does not contain objects/events that 
are composed of multiple features and share at least one 
feature type. Previous proposals for the binding problem  [33] 
have not dealt with such constraints on problem definition. 
   For a task where there is more than one stimulus in a 
sequence but where the information required of each stimulus 
can be extracted via Discrimination alone, the feed-forward 
pass can be repeated. In fact, ‘waves’ of stimuli continually 
flow through the system, but as each one passes through the 
full system, inspection of the results at the top of the hierarchy 
suffices. We denote this kind of process with the prefix “R-“. 
Thus a task such as RSVP (Rapid Serial Vision Presentation) 
is an example of R-Discrimination. 

B. Full Recurrence Binding 
   Full Recurrence Binding achieves the Localization Task.  If 
Convergence Binding is followed by a complete top-down 

traversal, attended stimuli in each feature map of the 
hierarchical representation can be localized. Recurrent 
traversals through the visual processing hierarchy ‘trace’ the 
pathways of neural activity that lead to the strongest 
responding neurons at the top of the hierarchy.  The attention 
processes include top-down stimulus segmentation and 
localization and local max selection on the top-down traversal. 
   Full Recurrence Binding can determine the location and 
spatial extent of detected object/event for images that: a) 
contain more than one copy of a given feature each at different 
locations; b) contain more than one object/event each at 
different locations; and, c) contain objects/events that are 
composed of multiple features and share at least one feature.  
   There is one more critical component of the top-down 
traversal, appearing on the figures as gray regions indicating 
areas of neural suppression or inhibition in the area 
surrounding the attended stimulus. This area is defined by the 
projection of the receptive field of the chosen neuron at the 

top. Inputs corresponding to the stimulus most closely 
matching the tuning characteristics of the neuron form the 
signal while the remainder of the input within that receptive 
field is noise. Any lateral connections are also considered as 
noise for this purpose. Thus, if it can be determined what those 
signal elements are, the remainder of the receptive field is 
suppressed, enhancing the overall signal-to-noise ratio for that 
neuron. This was first described in [4], the method for 
achieving it first described in [8] and fully detailed together 
with proofs of convergence and other properties in [9]. There 
is strong supporting evidence for an attentive suppressive 
surround [51]. Recent support for top-down selection has also 
appeared in a single-cell pre-frontal cortex study [52]. They 
show that in visual search tasks PFC is first to acquire the 
target, presumably as the strongest neural response. With 
human MEG evidence for recurrent processing responsible for 
the attentive suppressive surround [53], and the top-down 
timing of attentional effects throughout visual cortex [42], one 
can infer that a recurrent max-selection process begins in PFC.  

Figure 1. Recognition, attention and binding 
tasks organized along time. This is an 
abstraction; the timings are not meant to be 
absolute. Rather, due to incomplete experimental 
evidence, they only provide coarse temporal 
relationships among tasks. 
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   However, the top-down process is complicated by the fact 
that each neuron within any layer may receive input from 
more than one feature representation. How do the different 
representations contribute to the selection? Different features 
may have different roles. For example, there are differing 
representations for many different values of object velocity 
but an object can only exhibit one velocity. These different 
representations can be considered as mutually exclusive, so 
the top-down search process must select one, the strongest. On 
the other hand, there are features that cooperate, such as the 
features that make up a face (nose, eyes, etc.). These 
contribute to the face neuron and the top-down search process 
much select appropriate elements from each. There may be 
other roles as well. The key here is that each neuron may have 
a complex set of inputs, specific to its tuning properties, and 
the top-down traversal must be specific to each. This is 
accomplished by allowing the choices to be made locally, at 
each level, as if there were a localized saliency representation 
for each neuron [10]. There is no global representation of 
saliency required. Two variants on recurrence are now shown. 

C. Partial Recurrence Binding 
   If the full recurrence binding process does not complete for 
any reason, this is called Partial Recurrence Binding. Partial 
recurrence binding can find the additional information needed 
to solve the Identification Task if it is represented in 
intermediate layers of the processing hierarchy. Also, coarse 
localization tasks can be solved (such as ‘in which quadrant is 
the stimulus?”). If this is not deployed directly due to task 
needs but is due to interruption, then this may result in illusory 
conjunctions. The attention process involved is top-down 
feature search guided by local max selection. A variety of 
different effects may be observed depending on when the top-
down traversal the process is interrupted.  

D. Iterative Recurrence Binding 
  Iterative Recurrence Binding is needed for R-DiscriminationL 
Tasks and other more complex scenarios (call this class 
Extended Discrimination). Iterative Recurrence Binding is 
defined as one of more Convergence Binding-Full Recurrence 
Binding cycles. The processing hierarchy may be tuned for the 
task before each traversal as appropriate. The iteration 
terminates when the task is satisfied. The attention 
mechanisms include sequences of convergence and recurrence 
binding, perhaps with task priming specific to each pass. 
   There are at least two types of iterative recurrence binding. 
The first is the more obvious one, namely, multiple attentional 
fixations are required for some task. The second permits 
different pathways to be invoked. Consider a motion stimulus; 
motion-defined form where a square of random elements 
rotates in a background of similar random elements. A rotating 
square is perceived even though there is no edge information 
present in the stimulus. After one cycle of full recurrence 
binding, the motion can be localized and the surround 
suppressed. The suppression changes the intermediate 
representation of the stimulus so that any edge neurons in the 
system now see edges that were not apparent because they 
were hidden in the noise. As a result, the motion is recognized 
and with an additional processing cycle the edges can be 
detected and bound with the motion [10,11]. 

V. CONCLUSION 

A novel view of how attention, visual feature binding, and 
recognition are inter-related has been presented. It differs from 
any of those presented previously [33]. The greatest point of 
departure is that it provides a way to integrate binding with 
recognition tasks and with attention. The visual binding 
problem is decomposed into four kinds of processes each 
being tied to one of the classes of recognition behaviors 
defined by task and time course. We view this as a first 
version of this decomposition and much effort remains to 
complete it. In particular the Extended Discrimination Task is 
far too broad and requires refinement. 
   This view differs from conventional wisdom that considers 
both binding and recognition as monolithic tasks. The 
decomposition has the promise of dividing and conquering 
these problems, and the Selective Tuning strategy is proposed 
as the computational substrate for their solution. There are 
three ideas behind this solution: 1) top-down task directed 
priming before processing; 2) feed-forward traversal through 
the tuned visual processing hierarchy following the task-
modulated neural pathways; 3) recurrent traversals through the 
visual processing hierarchy that ‘trace’ the pathways of neural 
activity from the strongest responding neurons at the top of the 
hierarchy to the input that caused the feed-forward traversal. 
   These three basic steps are used in combination, and 
repeated, as needed to solve a given visual task. In simulation 
with artificial and real images, the model exhibits good 
agreement with a wide variety of experimental observations. A 
more detailed version appears in [54]. 

REFERENCES 

[1] James, W., (1890).  The Principles of Psychology, H. Holt. 
[2] Pillsbury W. B. (1908). Attention, New York: Macmillan. 
[3] Sutherland, S., (1998). Feature Selection, Nature 392, 350. 
[4] Tsotsos, J.K. (1990). A Complexity Level Analysis of Vision, Behavioral 

and Brain Sciences 13, 423-455. 
[5] Serre, T., A. Oliva and T. Poggio , (2007). A Feedforward Architecture 

Accounts for Rapid Categorization, Proc. National Academy of Sciences, 
Vol. 104, No. 15, 6424-6429. 

[6] Serre, T., L. Wolf, S. Bileschi, M. Riesenhuber and T. Poggio , (2007). 
Recognition with Cortex-like Mechanisms, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 29, 3, 411-426. 

[7] Fidler, S., Leonardis, A. (2007). Towards Scalable Representations of 
Object Categories: Learning a Hierarchy of Parts, IEEE CVPR 2007 
Minneapolis MN, June 18-23 

[8] Tsotsos, J.K. (1993). An Inhibitory Beam for Attentional Selection, in 
Spatial Vision in Humans and Robots, ed. by L. Harris and M. Jenkin, 
p313 - 331, Cambridge Univ. Press. 

[9] Tsotsos, J.K., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F. (1995).  
Modeling visual attention via selective tuning, Artificial Intelligence 78(1-
2), 507 - 547. 

[10] Tsotsos, J.K., Liu, Y., Martinez-Trujillo, J., Pomplun, M., Simine, E., 
Zhou, K. (2005). Attending to Visual Motion, Computer Vision and Image 
Understanding 100(1-2), 3 - 40. 

[11] Rothenstein, A., Rodriguez-Sanchez, A., Simine, E., Tsotsos, J.K., 
Visual Feature Binding within the Selective Tuning Attention Framework, 
Int. J. Pattern Recognition and Artificial Intelligence (in press). 

[12] Rodriguez-Sanchez, A.J., Simine, E., Tsotsos., J.K., Attention And 
Visual Search, Int. J. Neural Systems, 2007 Aug;17(4):275-88. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

[13] Miller EK, Gochin PM, Gross CG. (1993).  Suppression of visual 
responses of neurons in inferior temporal cortex of the awake macaque 
by addition of a second stimulus, Brain Res.  Jul 9;616(1-2):25-9. 

[14] Reynolds, J., Chelazzi, L., Desimone, R. (1999). Competitive 
Mechanisms Subserve Attention in Macaque Areas V2 and V4, The 
Journal of Neuroscience, 19(5):1736-1753. 

[15] Missal, M., Vogels, R., Li, C-Y., Orban, G. (1999). Shape Interactions in 
Macaque Inferior Temporal Neurons, The Journal of Neurophysiology 
Vol. 82 No. 1, pp. 131-142. 

[16] Recanzone, G.,  Wurtz, R., Schwarz, U. (1997). Responses of MT and 
MST Neurons to One and Two Moving Objects in the Receptive Field, 
The Journal of Neurophysiology Vol. 78 No. 6, pp. 2904-2915. 

[17] Reynolds, J., Desimone, R. (1998). Interacting Roles of Attention and 
Visual Salience in V4, J Neurophysiology 80: 2918-2940, 1998. 

[18] Chelazzi, L.,  Duncan, J., Miller, E., Desimone, R. (1998).  Responses of 
Neurons in Inferior Temporal Cortex During Memory-Guided Visual 
Search, The Journal of Neurophysiology Vol. 80 No. 6, pp. 2918-2940. 

[19] Rolls, E., Tovee, M. (1995). The responses of single neurons in the 
temporal visual cortical areas of the macaque when more than one 
stimulus is present in the receptive field, Journal Experimental Brain 
Research, Vol 103, No 3, p.409-420. 

[20] Zoccolan, D., Cox, D., DiCarlo, J., (2005).  Multiple Object Response 
Normalization in Monkey Inferotemporal Cortex, The Journal of 
Neuroscience, 25(36):8150-8164. 

[21] Sheinberg, D., Logothetis, N. (2001). Noticing Familiar Objects in Real 
World Scenes: The Role of Temporal Cortical Neurons in Natural Vision, 
The Journal of Neuroscience, 21(4):1340-1350. 

[22] Rolls., E., Aggelopoulos, N., Zheng, F. (2003). The Receptive Fields of 
Inferior Temporal Cortex Neurons in Natural Scenes, The Journal of 
Neuroscience, 23(1):339-348. 

 [23] Zucker, S W | Leclerc, Y | Mohammed, J. (1981). Continuous relaxation 
and local maxima selection - Conditions for equivalence (in complex 
speech and vision understanding systems), IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol. 3, pp. 117-127.  

[24] Ben-Shahar, O., Huggins, P., Izo, T., Zucker, S.W. (2003).  Cortical 
connections and early visual function: intra- and inter-columnar 
processing, J. Physiology-Paris, Vol 97, No 2, pp. 191-208. 

[25] Kapadia, M., Ito, M., Gilbert, G., Westheimer, G. (1995).  Improvement in 
Visual Sensitivity by Changes in Local Context: Parallel Studies in 
Human Observers and in V1 of Alert Monkeys, Neuron, Vol. 15, 843-856. 

[26] Macmillan, N.A., Creelman, C.D., (2005).  Signal Detection Theory: A 
User's Guide, Routledge. 

[27] Posner, M. I. , Nissen, M., Ogden, W., (1978). Attended and unattended 
processing modes: The role of set for spatial locations, in Pick & 
Saltzmann, eds., Modes of Perceiving and Processing Information, 
137-158, Hillsdale, NJ: Erlbaum. 

[28] Müller, H., Rabbitt, P. (1989). Reflexive and Voluntary Orienting of 
Visual Attention: Time course of activation and resistance to interruption, 
J. Exp. Psychology: Human Perception and Performance 15, 315-330. 

[29] Tsotsos, J.K., (1992). On the Relative Complexity of Passive vs. Active 
Visual Search, International  Journal of Computer Vision, 7(2):127-141. 

[30] Tsotsos, J.K., Motion Understanding: Task-Directed Attention and 
Representations that link Perception with Action, International Journal of 
Computer Vision  45:3, 265-280, 2001. 

[31] Rosenblatt, F., (1961). Principles of Neurodynamics: Perceptions 
and the Theory of Brain Mechanisms. Spartan Books. 

[32] Treisman, A., Schmidt, H. (1982). Illusory conjunctions in the perception 
of objects, Cognitive Psychology 14, 107-141. 

[33] Roskies A.(1999). The Binding Problem - Introduction, Neuron 24, 7–9. 
[34] Thorpe, S., Fize, D., Marlot, C. (1996). Speed of processing in the 

human visual system. Nature 381, 520-522. 
[35] Treisman, A. M.,  Gelade, G. (1980). A feature-integration theory of 

attention, Cognitive Psychology 12(1), 97-136. 

[36] Grill-Spector, K., Kanwisher, N. (2005). Visual recognition: As soon as 
you know it is  there, you know what it is. Psych. Science 16, 152-160. 

[37] Evans, K., Treisman, A. (2005). Perception of Objects in Natural 
Scenes: Is It Really Attention Free?, J. Experimental Psychology: Human 
Perception and Performance 31-6, 1476-1492. 

[39] Milner, P. (1974). A model for visual shape recognition, Psych. Rev. 81, 
521-535. 

[40] Fukushima, K.: A neural network model for selective attention in visual 
pattern recognition. Biological Cybernetics Vol 55:1 (1986) 5 - 15. 

[41] Ahissar, M., Hochstein S. (1997). Task difficulty and the specificity of 
perceptual learning, Nature, 387(6631):401-6.    

[42] Mehta, A., Ulbert, I., Schroeder, C. (2000). Intermodal selective attention 
in monkeys. I: distribution and timing of effects across visual areas,  
Cerebral Cortex 10(4), 343-358. 

[43] Duncan, J., Ward, J., Shapiro, K. (1994). Direct measurement of 
attentional dwell time in human vision, Nature 369, 313 - 315. 

[44] Gueye, L., Legalett, E., Viallet, F., Trouche, E., Farnarier, G., (2002). 
Spatial Orienting of Attention: a study of reaction time during pointing 
movement, Neurophysiologie Clinique 32, 361-368. 

[45] Lünenburger, L., Hoffman, K.-P. (2003). Arm movement and gap as 
factors influencing the reaction time of the second saccade in a double-
step task, European J. Neuroscience 17, 2481-2491. 

[46] Wolfe, J. M. (1998). Visual Search. In H. Pashler (Ed.), Attention (pp. 
13-74). Hove, UK: Psychology Press Ltd. 

[47] Schoenfeld, M., Tempelmann, C.,  Martinez, A., Hopf, J.-M., Sattler, C. 
Heinze, H.-J., Hillyard, S., (2003). Dynamics of feature binding during 
object-selective attention, Proc. Nat.Acad.Sciences 100(20), 11806-1181. 

[48] Tsotsos, J.K., Rodriguez-Sanchez, A., Rothenstein, A., Simine, E., 
(2007). Different Binding Strategies for the Different Stages of Visual 
Recognition, Advances in Brain, Vision, and Artificial Intelligence, 
Lecture Notes in Computer Science Vol. 4729, Springer Berlin. 

 [49] Treisman, A. (1999). Solutions to the Binding Problem: Progress 
through Controversy and Convergence, Neuron 24:1:105-125. 

[50] Reynolds, J., Desimone, R., (1999). The Role of Neural Mechanisms of 
Attention in Solving the Binding Problem, Neuron 24, 19–29. 

[51] Hopf, J.-M., Boehler C.N., Luck S.J., Tsotsos, J.K., Heinze, H.-J., 
Schoenfeld M.A. (2006). Direct neurophysiological evidence for spatial 
suppression surrounding the focus of attention in vision, Proc. the 
National Academy of Sciences, 103(4):1053-8. 

[52] Buschman, T., Miller, E., (2007). Top-Down Versus Bottom-Up Control 
of Attention in the Prefrontal and Posterior Parietal Cortices, Science 
315, 1860. 

[53] Boehler, C. Tsotsos, J., Schoenfeld, M., Heinze, H.-J. Hopf, J.M., The 
center-surround profile of the focus of attention arises from recurrent 
processing in visual cortex, (submitted).  

[54] Tsotsos, J.K., Rodriguez-Sanchez, A., Rothenstein, A., Simine, E., 
(2008). Different Binding Strategies for the Different Stages of Visual 
Recognition, Brain Research , Available online 23 May 2008. 

 
John K. Tsotsos received his Ph.D. in 1980 from the University of Toronto. He was 
on the faculty of Computer Science at the University of Toronto from 1980 to 1999. He 

then moved to York University appointed as Director of 
York's Centre for Vision Research (2000-2006) and is 
currently Distinguished Research Professor of Vision 
Science in the Dept. of Computer Science & Engineering. 
He is Adjunct Professor in both Ophthalmology and 
Computer Science at the University of Toronto. Dr. Tsotsos 
has published many scientific papers, six conference 
papers receiving recognition. He currently holds the 
NSERC Tier I Canada Research Chair in Computational 
Vision. He has served on the editorial boards of Image & 

Vision Computing, Computer Vision and Image Understanding, Computational 
Intelligence and Artificial Intelligence and Medicine and on many conference 
committees. He served as General Chair for IEEE International Conference on 
Computer Vision 1999.  


