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In the human visual system, the projective relationship between the
images seen in each eye with each other changes with their motion as
the viewer attends to different points in space. The active vision heads
built for many humanoid robots approximate human gaze behavior and
share this property. Knowledge of this projective relationship is used
in stereo vision tasks and is captured entirely by the position and
orientation of the cameras with respect to each other and properties
intrinsic to the individual cameras. In this work we presenta method
for inferring a kinematic model of a robots active vision system and
use it to estimate of the system’s epipolar geometry as it changes
when the cameras undergo motion. This kinematic model constitutes
a model of the self in terms the visual system.

Epipolar geometry describes the projective relationship between
the two cameras in a stereo vision system. We model these cameras
using thepinhole camera model. In a classical pinhole camera, we
are able to take pictures because a pinhole in the center of the camera
allows only a narrow ray of light to pass through, carrying the color
information of the object that it bounced off of prior to entering the
camera. Therefore, where a single pixel imaged by a pinhole camera
resides in 3-space is constrained to a single ray of light. Ina stereo
pair of cameras, this ray of light will lie along a single linein the
other image. This is referred to as theepipolar constraint, so named
because all suchepipolar lines pass through theepipole, the image
of the other camera’scamera center[1]. Estimating this relationship
is referred to simply as theestimation of epipolar geometry, whereas
estimating those parameters intrinsic to the camera is referred to as
camera calibration.

An active vision system is one in which either the cameras are able
to move or in which they include manipulators that are able tointeract
with the environment. An example of such a vision system is a camera
attached to a movable arm, referred to as ahand camera. Hand-Eye
and Head-Eye calibration both refer to the process of inferring the
mounting of a camera to an underlying system with known kinematics.
If these kinematics are unknown, the process of inferring them is
kinematic calibration.

Nico is an upper-torso humanoid robot modeled after the fiftieth
percentile 12-month-old male infant. The head comprises anactive
vision system with 6 mechanical degrees of freedom. The pitch angle
of the eyes is mechanically coupled, while their yaw is independent of
one another. The capability of this head to move its eyes independently
of each other gives rise to the afforementioned changes in their
epipolar geometry. These changes are analagous to changes in the
human visual system under similar conditions. One notable difference
between the human visual system and Nico’s is that the human visual
system exhibitscyclovergence, in which the eye rotates torsionally
during its motions.

In computer vision, it is common to utilize the epipolar constraint
in order to restrict the search forstereo matches, pairs of pixels in
the stereo pair that image the same 3D point, to a region indicated
by the epipolar lines. Using dynamic random element stereograms,
Stevenson and Schor demonstrated that the human visual system does
not restrict stereo matches to those regions indicated by epipolar
lines[2]. Matches and accurate distance estimations can bemade in
a regions significantly wider than is indicated by the epipolar line,
by up to 45 arcmin of visual angle. Schreiber et al used cyclorotated
stereograms to demonstrate that scans for stereo matches occur over

fixed regions of the retina. Instead of changing the regions of retina
that are scanned for matches, the eye uses cyclovergence to assure
that the epipolar lines lie within this scanned region[3]. Analagously,
we can use the kinematics of an active vision system to updateour
estimate of the epipolar geometry as the system undergoes motion.

We present two algorithms. The first is an algorithm that builds
on existing computer vision techniques to yield a kinematicmodel of
the visual system in terms of its camera center, the orientation of the
camera, and a joint behind each eye. The second allows us to compute
the system’s epipolar geometry after moving these joints.

In order to compute the kinematics of the visual system, we estimate
the epipolar geometry of the cameras pointed in multiple orientations.
Because the only joints in the head that affect the epipolar geometry
are the yaw joints behind the eyes, we will concentrate on them.
Our procedure is as follows. First, we point the eyes in an arbitrary
direction, then, we pick an angle for each eye, and turn it to that angle
along its yaw joint. We estimate the epipolar geometry between the
two cameras in the first orientation, and, for each camera, between
its two orientations. Looking at the case of the single camera, we
now have two camera centers and two rotation matrices describing
orientation. Using this data, and knowing that the camera faces directly
away from its center of rotation, we can determine the location of the
center of rotation, as this data fully describes an isocelestriangle from
which we can compute all of the parameters of our kinematic system.
Combining this with the estimate of epipolar geometry between the
two cameras in their first view gives us sufficient information to fully
describe the kinematic system in terms of the epipolar geometry.
Computing the updated epipolar geometry as the system undergoes
motion is a matter of adjusting the angle of rotation in two rotation
matrices that describe the rotational component of each joint in
this kinematic system. This angle can be retrieved from the robot’s
encoders. The remainder of the computation breaks down intoseveral
matrix multiplications that can be carried out in time linear in the
number of joints modeled, assuming that we are modeling onlythe
yaw joints in a stereo active vision head, this is constant time.

Joints that the camera does not face directly away from can bemod-
eled by performing an analagous computation for three orientations.
The three camera centers lie along a circle from which we can compute
the kinematics of the system. The camera orientation with respect to
this system can be computed using the rotation matrices fromthe
estimate of epipolar geometry. Additionally, linkages observed in the
visual field can be similarly modeled by tracking the motion of points
along their arms as measured by the vision system. We can learn
the kinematics of systems with multiple linkages by moving both
sets of joints to uncover their mountings with respect to each other.
Construction of a system that uses these techniques is in progress.
Understanding this relationship brings us to the key insight of this
work. Systems that perform hand/head-eye calibration compute the
mounting of cameras with respect to a system of known kinematics.
However, we are able to model these kinematics directly by realizing
that for many tasks we only care about the kinematics insomuch as
it yields changes that are directly witnessable in the vision system.
For the estimation of epipolar geometry and camera orientations we
only care about changes in artifacts of the vision system, such as the
position of the camera center and orientation of the camera,which
can be retrieved using existing computer vision techniquesand used



in our kinematic computations.
The model presented in this paper constitutes a self-model of the

imaging properties of the visual system, as well as its kinematics and
layout in the head. Our first work in the area of self-modelingwas
in the form of self-other discriminiation [4], in which Nicolearned
to discriminate itself from other objects reflected in a mirror. The
development of self-awareness and self-other discrimination is an
active area of interest in developmental psychology and ethology. The
process by which infants are able to distinguish the limits of their
own bodies from the outside world is a rich area for computational
modeling because empirical testing of hypotheses of this sort is
extremely difficult [5]. Much like puppies, robots need to not chase
their own mechanical tails. This work is an important step towards
our overall dual goals of developing robots that model themselves and
better understanding how humans do the same.
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