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Abstract—During the learning of speech sounds and other
perceptual categories, category labels are not provided, the
number of categories is unknown, and the stimuli are encountered
sequentially. These constraints provide a challenge for models,
but they have been recently addressed in the Online Mixture
Estimation model of unsupervised vowel category learning [1].
The model treats categories as Gaussian distributions, proposing
both the number and parameters of the categories. While the
model has been shown to successfully learn vowel categories,
it has not been evaluated as a model of the learning process.
We account for three results regarding the learning process:
infants’ discrimination of speech sounds is better after exposure
to a bimodal rather than unimodal distribution [2], infants’
discrimination of vowels is affected by acoustic distance [3],
and subjects place category centers near frequent stimuli in an
unsupervised visual classification task [4].

I. INTRODUCTION

The ability to categorize objects is critical for perception.
Knowing an object is in the category ‘“chicken” provides
crucial information about that object — such as it has feathers, it
is edible, and it can fly. Much modeling work has investigated
how categories are learned, e.g. [5]-[7].

While category learning is often facilitated by associating
objects with category labels, categories can be acquired by
mere exposure to stimuli — no labels included. For instance,
during the first year of life, infants begin acquiring the speech
sound categories of their native language; sensitivity to non-
native contrasts decreases [8] and sensitivity to native contrasts
increases [9]. In the visual modality, Rosenthal et al. [4] found
that subjects’ categorical decisions, without feedback, were
influenced by the distributional properties of the stimuli.

How can category structure be learned without labels?
Models face two challenges: (i) the number of categories to
learn is unknown, and (if) the stimuli are encountered one
by one in mixed order instead of all at once [1]. There
has been some recent progress addressing these issues in
models of speech category learning [1], [10], [11]. The Online
Mixture Estimation (OME) algorithm [1] is an online variant
of Expectation-Maximization (EM) that addresses both of the
above issues. It tries to find a set of Gaussian categories
that account for a sequence of stimuli, proposing both the
number and parameters of the categories. The model is also
somewhat biologically plausible since a topographical network
can serve as an approximation. In Vallabha et al. [1], the OME
algorithm successfully learned the number and parameters of

multidimensional vowel categories in English and Japanese
[1]. However, successfully learning vowel categories does not
imply the algorithm successfully models the learning process.
The current work provides such an evaluation.

What quantitative means are available to assess the learning
process? Category learning is often marked by changes in
discrimination. During the learning process, there is evidence
for improving discrimination across category boundaries (ac-
quired distinctiveness) [9], [12], [13] and declining discrim-
ination within category boundaries (acquired similarity) [8],
[14], terms from [12]. In a very similar algorithm to OME
but restricted to one dimensional stimuli, McMurray et al.
[11] found both effects, defining discrimination as the extent
to which two stimuli are members of different estimated
categories. Should OME show similar effects, it would capture
two important aspects of the category learning process.

We apply the OME algorithm to three other results regarding
the learning process. The first model is of Maye et al.’s [2]
study where infants are sensitized to a [da]-[ta] continuum of
speech sounds with either a bimodal or unimodal distribution.
Infants sensitized to the bimodal distribution showed better
discrimination of the endpoints. Second, we investigated how
discrimination might develop over time. In Sabourin et al.
[3], infants showed better discrimination of acoustically more
distinct vowels, and we applied the OME model to this vowel
space. Third, we extended the model from the domain of
speech to vision, modeling Rosenthal et al.’s [4] unsupervised
category learning task where subjects’ categorical choices
were influenced by the stimulus distribution.

II. THE ONLINE MIXTURE ESTIMATION MODEL

The Online Mixture Estimation (OME) algorithm treats cat-
egories as multivariate Gaussians distributions and gradually
estimates the category structure from a sequence of stimuli,
proposing both the number of categories and their parameters
(Figure 1). The model begins with many (50 or more) initial
guess categories distributed randomly about the space in which
the data reside.' Each guess category has an associated mixing
probability, the probability of the guess category contributing
a random token to the stimulus set. In our simulations, all
guess categories were initialized to be equally likely. For speed

'In our simulations, the initial guess category covariance matrices were
diagonal (although the full covariance matrix is updated during learning).
The initial variances along the diagonal were random.



we tend to eliminate them when their mixing probability falls
below a threshold but this is not necessary.

During learning, the probability that category c is responsi-
ble for stimulus S is an application of Bayes’ Rule,
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where p(S|c) is the Gaussian density for category ¢, and p(c)
is the mixing probability. We refer to the posterior probability
p(c|S) as the responsibility of category c for stimulus S.

Learning occurs online as stimuli are presented one at a
time in random order. For the presentation of stimulus S,
the responsibility p(c|S) is first calculated for each category
(Equation 1). The mean and covariance matrix for each cate-
gory are updated to account better for .S, with the update size
proportional to the responsibility and a learning rate. Then,
the mixing probability of the winning category (the category
with highest responsibility) is increased such that the mixing
probabilities still sum to 1 across categories. For a precise
formulation of the algorithm, see [1] Methods section.

We extend the OME model to account for discrimination
behaviors, defining pairwise discrimination as

Discrimination(Sq, Sp) = \/Z(;D(dsa) —p(clSh))? (2)

which is the Euclidean distance between the responsibility
vectors for two stimuli S, and S, (a similar approach was
taken in McMurray et al. [11] with root mean square distance).
If two stimuli are likely to be categorized as the same, they are
hard to discriminate. If two stimuli are likely to be categorized
as different, they are easy to discriminate. Thus, discrimination
is defined as a function of categorization, determined by the
current category representations during learning.

Before Training After Training

Fig. 1. This figure illustrates OME learning stimuli in 2D space. OME is
initialized with many guess categories spread over input space (grey ovals),
with equal mixing probabilities (grid of black circles). Learning involves
presenting the stimuli (black dots) one by one and updating the categories.
After learning, unneeded guess categories have mixing probabilities near zero
(open circles in grid), and OME has fit the remaining guess categories to
the stimulus clusters. Figure reprinted with permission from [1], Copyright
(2007) National Academy of Sciences, U.S.A.

III. EXPERIMENT 1: BETTER DISCRIMINATION WITH
BIMODAL RATHER THAN UNIMODAL DISTRIBUTION

We model a study from Maye et al. [2] that investigated
a mechanism of developmental change in speech perception.
The authors sensitized six and eight-month-old infants to a

continuum of unaspirated coronal stops ranging from a [da]-
like sound to a more [ta]-like sound, which is a contrast
infants of this age have been found to discriminate without
sensitization [15]. This continuum was drawn from either a
unimodal or bimodal distribution (Figure 2). As a result of
sensitization, the authors predicted that “infants exposed to
a bimodal distribution would form a two-category represen-
tation of these sounds, while infants exposed to a unimodal
distribution would form a one-category representation.” As a
consequence, the bimodal distribution would facilitate better
discrimination of the endpoints, a conclusion supported by the
data [2].

Since this has been suggested as a mechanism [2] for the
developmental changes seen during infant speech category
acquisition [8], [9], it is crucial that OME shows a similar
effect — gravitating towards a structure in the bimodal case
that supports better discrimination. In this experiment, we
investigate how OME reacts to unimodal vs. bimodal stimuli.
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Fig. 2. Bimodal distribution (dotted) and unimodal distribution (solid) of [da]-
[ta] stimuli. The x-axis is the discrete stimuli from the most [da]-like (left)
to [ta]-like (right). The y-axis is frequency of presentation for the infants and
model. Reprinted from [2] Copyright (2002), with permission from Elsevier.

A. Model

We used the exact bimodal and unimodal distributions from
Maye et al. [2]. Thus, both the infants and model were
presented with 64 stimulus tokens. The stimuli presented to
the model were simply the values 1 through 8, presented
in random order. For the model parameters, there were 50
initial guess categories, with means randomly chosen from
a uniform distribution from values -1 to 10 and standard
deviations from 2 to 4. Thus, the algorithm began with a
range of initial categories with different standard deviations
and means, disallowing it to anticipate the structure of the
actual data. It seems reasonable that an organism would have
initial categories in a variety of sizes, but we do not have any
specific reasons for selecting one range of standard deviations
over another. The learning rate was .05, and guess categories
were removed after dropping below mixing probability .001.
Using the discrimination metric from Equation 2, we measured
discrimination of the [da]-[ta] continuum endpoints as training
progressed. Thus, we determined if an underlying bimodal
distribution leads to better endpoint discrimination than a uni-
modal distribution. We ran 24 replications of each distribution
with random initial categories and stimulus presentation order.
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Fig. 3. Time course of [da]-[ta] discrimination for the two distributions
averaged over runs. Error bars are standard error.

B. Results

We found significantly better endpoint discrimination in
models exposed to the bimodal distribution, as was the case
for the infants in [2]. After learning, the mean discrimination
was 1.02 for the bimodal models and 0.079 for the unimodal
models (independent samples ¢(46) = 7.12,p < .001). The
time course of discrimination is plotted in Figure 3. There
was a general increase in discrimination for the bimodal dis-
tribution. Despite an initial increase in discrimination for the
unimodal distribution, the models showed an overall decrease
in discrimination (paired ¢(23) = 3.27,p < .01).

The model accounts for two aspects of the data. First,
the OME model shows superior discrimination after exposure
to a bimodal rather than unimodal distribution. Second, the
infants who were familiarized to the unimodal distribution
did not significantly discriminate the endpoints in Maye et al.
[2], although a past study has shown infants of this age can
make this discrimination [15]. Thus, the unimodal distribution
likely caused a reduction in discrimination. The OME model
accounts for this reduction. If this sensitivity to unimodal vs.
bimodal contrasts is a central mechanism in infant speech
category acquisition, OME provides an account of how the
learning process could occur — through small, online updates
to the category structure as the infant receives speech tokens.

IV. EXPERIMENT 2: CLOSE CATEGORIES ACQUIRE
DISTINCTIVENESS SLOWER

We have shown that the OME model accounts for an
important proposed mechanism of speech acquisition. Further-
more, as mentioned, the OME algorithm has found success in
learning vowel categories [1]. Can we say more about how
discrimination and category structure develops throughout the
learning process? During infant speech acquisition, speech
tokens in the same category become harder to discriminate
(acquired similarity) and tokens in different speech cate-
gories become easier to discriminate (acquired distinctiveness).
McMurray et al. [11] found both effects with a similar model
and discrimination metric. Does OME show these effects?

Furthermore, in Sabourin et al. [3], infants showed superior
discrimination on an acoustically more distinct contrast. If two
speech tokens are from different categories, are they easier to
discriminate if they belong to further apart categories?

In this experiment, we model Sabourin et al. [3] who
tested 8-month-old English monolinguals on their ability to
discriminate acoustically similar vowels /e/ vs. /I/ and /e/ vs.
/E/ (Figure 4). Behavioral tests indicated that infants could
discriminate the acoustically more distinct /e/ and /E/ but not
/el and /I/. Further investigation using event-related potentials
found that infants could discriminate both contrasts, but it also
showed infants had more difficulty discriminating /e/ vs. /I/. In
this experiment, we trained the model on points drawn from
these three vowel categories (Figure 4), and tracked discrimi-
nation between the categories. The stimuli were 2D in F1 and
F2 space. We would expect discrimination to increase faster
between /e/ vs. /E/ rather than /e/ vs. /I/. If the initial guess
categories are wide enough to spread across two vowels, they
might provide similar responsibilities to tokens of neighboring
vowels, contributing little to discrimination. However, these
wide categories may aid discrimination between further apart
categories. The OME model was trained 10 different times
with different draws from the vowel stimuli (Figure 4). See
footnote for details.”
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Fig. 4. Vowel categories estimated from Sabourin et al. [3] and converted to
the Bark scale. The 1000 blue points are a random draw, and the black circles
are the categories OME found, plotted 1 s.d. along each principal axis.

A. Results

To calculate discrimination between two categories rather
than two stimuli as in Equation 2, we simply drew 50 addi-
tional test points from each vowel before training. Then we
define the perceptual distance between two categories as the
mean pairwise discrimination between the test points of those
categories (with the first test point from each category paired,

2We drew 1000 points from these three vowel, assumed to be Gaussian, with
equal probability from each. The points were then converted to the Bark scale
(1 to 24, corresponding to the first 24 critical bands of hearing). There were
50 initial guess categories. We ran the algorithm 10 times with different draws
for the vowel points and initial categories. The authors provide the means but
not the standard deviations for the vowel categories, so they were estimated as
1/3 the range along F1 and F2 with no covariance. For initializing the guess
categories, the following were randomly drawn from uniform distributions in
Bark: F1 means from 3.9 to 8, F1 s.d. from .5 to 1, F2 means from 12.4 to
15, and F2 s.d. from .5 to 1.5. The learning rate was .01.
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Fig. 5. This figure plots perceptual distance across training, averaged over
10 runs. The largest standard error, if shown, would be 0.036. In the legend,
the first three lines illustrate increasing discrimination between vowels, and
the last three lines illustrate decreasing discrimination within vowels.

the second paired, and so on). We use the analogous method
of pairing test points within a category to measure perceptual
distance within a category. Thus, acquired distinctiveness is in-
creasing perceptual distance between categories, and acquired
similarity is decreasing perceptual distance within categories.
OME learned 3 vowel categories in all 10 runs. The model
shows acquired distinctiveness [9] and acquired similarity [8]
(Figure 5). We also found that the model’s discrimination
of vowels is affected by acoustic distance (Figure 5). In
particular, the perceptual distance between vowels /e/ vs. /E/
grew significantly faster than /e/ vs. /I/, accounting for the
result in Sabourin et al. [3].> OME thus predicts that further
apart categories differentiate faster, and accounts for acquired
distinctiveness and similarity, found in both supervised and
unsupervised category learning in various modalities.

V. EXPERIMENT 3: PLACING CATEGORIES IN FREQUENT
STIMULUS AREAS

While both previous experiments were auditory, the same
principles of unsupervised learning, online updating, and un-
known number of categories the OME algorithm instanti-
ates can be applied to visual category learning. In the next
experiment, we modeled Rosenthal et al.’s [4] unsupervised
categorization task, where subjects categorized simple, one-
dimensional visual stimuli. Subjects saw a sequence of ver-
tical stripes with varying width, and they were informed
“only that they would see stimuli of one or more kinds and
should classify them accordingly,” with eight keys available
for responses. The stimulus width was drawn from a fre-
quency distribution with several Gaussian peaks (either 3-

3To check the significance of the faster growth, we fit a damped exponential
curve to each distance trajectory separately for the 10 runs: f(z) = ¢(1 —
e*dz). Parameter d corresponds roughly to “rate of increase,” where a larger
value is a faster increase. Thus, we take d as an approximation for how fast
two vowels differentiate. By this measure, /e/ vs. /E/ differentiates significantly
faster (paired ¢(9) = 7.39,p < .001).

peaks, 4-peaks, or uniform distribution). While subjects’ post-
test frequency evaluations did not match the actual frequency,
their categorical decisions were nonetheless influenced by the
stimulus frequency; subjects placed category centers around
stripe widths that appeared most frequently.

To account for this implicit effect, Rosenthal et al. proposed
a self-organizing neural network model utilizing Hebbian
learning. While the neural network model accounts for the
gradual organization of category structure, it makes one wrong
prediction using settling time as a measure of reaction time
(RT). Subjects showed lower RT for extreme stimuli (ex-
tremely narrow or wide) than for peak stimuli, while the model
showed the opposite. In this experiment, we show that the
OME algorithm provides an account for the data in [4].

A. Model

OME was trained for 4,096 trials, as were subjects. There
were 20 replications for each condition (3-peak, 4-peak, and
uniform) with different random stimulus sequences and start-
ing guess categories. Rosenthal et al. [4] allowed the stripe
width to vary from 1-512 pixels, divided into 36 sample bins.
The model stimuli were integers from 1 to 36 drawn from the
same distributions, but the stimuli were perturbed by Gaussian
noise with standard deviation 2 before training OME. There
were 100 initial guess categories with means picked from a
uniform distribution from 1 to 36 and standard deviations were
picked from a uniform distribution from (1/2)o to 250 for
the 3-peak o. The learning rates were .0025 and .005 for
mixing probability and category updates, respectively. Guess
categories below mixing probability .0001 were removed.

B. Results

Both the OME model and human subjects organized their
category structures based on the distributional properties of the
stimuli. During the fourth session (last quarter of training), the
subjects and model showed a clear tendency to organize cat-
egory centers near peak frequencies and boundaries between
peak frequencies (see Figure 6A). See footnote for details on
calculating the centers and boundaries.*

Rosenthal et al. [4] also investigated the time course of
categorization. In Figure 6B, the histogram displayed in Figure
6A was calculated for each of the four sessions and averaged
across multiple peaks. Thus, it illustrates how learning evolves
across sessions. As with the subjects, the model’s centers
and boundaries are increasingly influenced by the stimulus
distribution as the sessions progress. However, evolution of

4The calculation of centers and boundaries followed [4]. First, the authors
defined a sorting coherence function, for a particular subject, x(b,c) as
the fraction of presentations a stimulus in bin b was classified as class
c. To simulate this measure in our model, we defined a classification for
a particular stimulus as the guess category with the highest responsibility
(Equation 1). Then, calculating the sorting coherence function for a session
is straightforward. Second, the center and boundaries must be calculated for
each category c chosen for classification in a particular session. The center was

right boundary right boundary
defined as Eb:left boundary b X(b7 C)/ Zb:left boundary X(b’ C)' The

location of the left (right) boundary was the last bin in which x(b, c¢) < 0.5,
when starting at the leftmost (rightmost) bin and moving towards the right
(left). The edge bins were the boundaries for the edge categories [16].
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All of the diagrams under headings “behavior” and “Rosenthal et al. Model” are reprinted with permission from [4], Copyright (2001) National

Academy of Sciences, U.S.A. Note that some bars in this figure extend beyond 60%. (a) For the fourth session, this figure shows the histogram of center
and boundary locations for the subjects and the model. The bars on the histogram represent the percent of subjects (or model runs in the case of OME)
to have a center or boundary in that stimulus bin. The x-axis denotes the width of the stripes, with the stimulus frequency distribution illustrated by the
black curve. (b) For all four sessions, this figure shows the histogram of center and boundary locations, averaged across peaks. Thus, the bars represent
average percent of subjects having a center/boundary within a certain distance from a distribution peak. The numbers above the diagrams are a measure
of accuracy, with lower numbers indicating a closer match of the centers/boundaries to the stimulus dlstrlbutlon centers/boundaries. They are calculated as:

:ial” (heighty) = (number of bars from bary to distribution center [or boundary])/ Zn al” height) where nbars is the number of bars.

The heights from the behavioral data are estimated from the graphs in [4]. Error bars are s.d. (c) For the fourth session, this ﬁgure shows RT for the behavior
and OME, averaged across subjects (or runs). The right column shows convergence time of the Rosenthal et al. model, which increases at the edges where

the behavior and OME do not. The error bars are s.e. for the behavior/OME and s.d. for the Rosenthal et al. model.

the boundaries is faster in the model than in subjects. Also,
subjects’ categories evolve more slowly in the four-peak case
than the three-peak case, but not in the model.

Also, Rosenthal et al. [4] measured subject response time
(RT). To simulate RT in the model for a stimulus, we took the
largest guess category responsibility (Equation 1) minus the
second largest, which is inversely related to RT and scaled into
the subject range.’ Thus, if one guess category was clearly the
most responsible for a stimulus, the responsibility difference
is large and RT is small. If two guess categories were similarly
responsible, the responsibility difference is small and the RT
is large. In Figure 6C, we compare RT in the subjects and
the model for the fourth session, finding a clear tendency for
longer RT near the middle of two peaks.

Interestingly, Rosenthal et al. [4] found that stimuli near the

SWe scaled the difference in responsibility into simulated RT in ms: RT =
—400(Largest responsibility — 2nd Largest Responsibility) + 1050.
The difference in responsibilities could vary from O to 1, and thus simulated
RT can vary from 650 to 1050 ms.

edges of the range were categorized faster (particularly for the
4-peak and uniform cases). Their neural network model makes
the opposite prediction using settling time as a measure of RT,
while OME makes the correct prediction (Figure 6C). In the
OME model, the category closest to an edge, for example the
left edge, would be mostly responsible for edge stimuli to
the left of the category. Therefore, the category likely does
not have much competition for the edge stimuli, producing
a small second largest category responsibility and thus a low
simulated RT. Thus, the model can account for this edge effect.

This model is robust across a range of parameters, but
it is interesting to examine values that do not fit the data.
Initializing OME with many small guess categories, such as

d. (1/2)c where o is the 3-peak Gaussian s.d., without an
increase in learning rate results in too many categories in
early learning to match the subject histograms. Furthermore,
the model can break down by starting with only large guess
categories, such as s.d. 60, where it forms too few categories.

Given the similarity of performance between OME and the



behavior, OME is a particularly good model of unsupervised
categorization when stimuli are drawn from a Gaussian mix-
ture. As with the subjects, the inferred center and boundary
locations were influenced by the distribution frequencies, with
the influence evolving over training time. Furthermore, as with
the subjects, it seems natural that OME would be more certain
about a categorization query for peak and edge stimuli.

VI. GENERAL DISCUSSION

Categorization is essential to perception, and much of cate-
gory learning is unsupervised. How can category structure be
learned from just a sequence of stimuli? The Online Mixture
Estimation (OME) algorithm [1] has provided some progress,
showing that the number and parameters of vowel categories
can be learned through online updating. However, showing the
algorithm can solve the required learning problem [1] does not
show the algorithm is a model of the processes to get there.

From this work, there are several results to recommend
OME as a process model of category learning. In Experiment
1, the model produced better discrimination after exposure to
a bimodal rather than unimodal distribution, accounting for
a proposed mechanism of infant speech acquisition [2]. To
investigate how discrimination develops over time, in Experi-
ment 2, the OME model was applied to a crowded vowel space
[3]. Both infants and the model showed better discrimination
of a more acoustically dissimilar contrast than a more similar
contrast. Also in Experiment 2, discrimination between vowels
increased over time (acquired distinctiveness) and discrimina-
tion within vowels decreased over time (acquired similarity);
both effects have empirical evidence from various modalities
[81, [9], [12]-[14] and follow naturally from the modeling
framework. In Experiment 3, the OME model showed that
the same principles governing auditory category learning can
be applied to visual category learning, where both subject
and model categorization choices and response times were
influenced by the distribution of stimuli. As previously noted,
the model does not yet match some aspects of the human
time-evolution data, an issue we are currently investigating.

More generally, OME provides an elegant solution to the
problems of (1) scalability, (2) sensitivity, (3) revisability, and
(4) cross-modal fusion in category learning. (1) Regarding
scalability, OME’s computational complexity is largely inde-
pendent of the number of functionally useful data categories,
only influencing complexity by affecting the number of guess
categories. (2) Also, OME is sensitive to overlapping cat-
egories, reconstructing the data distribution from categories
with means as close as 2.5 s.d. apart. (3) Additionally, the
model is able to revise its solution if presented dynamic data
categories. If a data category is removed from presentation,
OME’s corresponding guess category will progressively drop
in mixing probability. If a new data category is added during
learning and unused guess categories are not removed, they can
provide a mechanism for adding categories. (4) Furthermore,
OME can learn cross-modal categories. Combining auditory
and visual dimensions, such as speech and the speaker’s mouth
position, is entirely compatible with the approach.

There is much to explore in future work, including how
repeated stimulation affects sensitivity. In Jenkins et al. [17],
monkeys placed their fingers in contact with a rotating disk
in exchange for reward many times a day over months. This
repeated stimulation of the fingertips resulted in shrinkage of
receptive fields and expanded cortical area for the stimulated
surface, likely improving sensitivity in this region. In contrast,
repeated and concentrated stimulation in OME would likely
form a category, resulting in decreased sensitivity due to
acquired similarity. The issue here is empirical as well as
theoretical; it is not yet clear why some experiments pro-
duce increased sensitivity, while others produce decreased
sensitivity, to clustered stimul. We are examining whether
modifications to OME could produce the opposite behavior,
potentially providing insight into this deep question.
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