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Most robot systems are designed to operate within a single
task domain. Each additional task or environment condition
requires significant human effort. The goal of this work is to
develop a robot control architecture that alleviates the human
programming bottleneck by allowing the robot to learn, store,
and reuse task policies. This architecture will allow a robot to
continually adapt to new environments, users’ desires, andits
own changing physical capabilities.

Task level learning is the primary focus of this work, where
tasks are defined as complex and long-term decision process.
Demonstrations of tasks, performed by human teachers, boos-
trap the learning process. In [1], [5] a robotic arm learned
the pendulum swing-up and juggling skills by seeding the
learning process with human demonstrations. Although this
learning is strongly applicable to joint trajectories, it does not
extend well to task learning. Functional learning has also been
applied at the task level, but is limited by task complexity [4].
To overcome these limitations, policies consisting of discrete
actions are often learned [2], [3]. This approach is inherently
limited to a small range of tasks due to the restricted action
set.

The challenges described above necessitate the creation ofa
general purpose task learning architecture that can be applied
to a range of tasks, robots, and environments. Tasks should not
be limited by a predetermined set of actions, nor should they
be constrained to a particular robot configuration. Furthermore,
the system should be capable of continually learning new
tasks, and intelligently applying prior knowledge toward these
new tasks. Our work can be summarized as developing a
system capable oflife-long learning of tasks limited only by
a robot’s physical capabilities.

As a motivating example, consider a mobile manipulator
that should ultimately accomplish a search and rescue task.
Teaching or programming the robot to perform such a complex
task is rather difficult due to the scope of the problem
and dynamic environmental conditions. Instead, this task can
be broken down into a few sub-tasks, such as search and
human retrieval. Searching can be further decomposed into
exploration and human identification. Finally, exploration can
be defined as a combination of navigation tasks, such as
hallway and doorway traversals, and maintenance of a map.
As one descends the task hierarchy, the tasks become more
general purpose. Navigation tasks can be applied to not only
search and rescue, but also construction, tracking, and pursuit-

evasion. Learning these sub-tasks first is beneficial, as they can
be reused repeatedly. This incremental approach to learning
is found throughout human societies, and should be equally
applicable to the robot domain as well.

Teaching each of these tasks is performed by a human
through a graphical interface. Commands are given in task
space, and feedback is provided by visualization of sensor
data. This training environment forces the human teacher to
think in terms of what the robot can understand. During a
demonstration, the robot student monitors and records infor-
mation from its environment. The collected data are then used
to create or modify a task.

Each task is represented by a decision network, a auge-
mentation of Bayesian networks. These networks have several
appealing features including human readability, compact rep-
resentation of conditional dependencies, and a simple refine-
ment process. Complex tasks can be represented without an
exponential growth in states, as seen in POMDPs and MDPs,
or in branches, as in decision trees. Networks of this type can
also be combined hierarchically, allowing for complex task
models.

The teaching and learning processes result in a robot that
is capable of performing one or more tasks based on the
demonstrated generalized tasks and combination of those
tasks. An operator can activate a task, at which time the
robot chooses the most appropriate decision network from
its repertoire. This choice is based upon the given task goal,
and observable features. The chosen network is executed to
completion, or error. During autonomous operation a human
observer can offer feedback in the form of positive or negative
rewards, indicating good and bad actions. These rewards help
refine the decision network, by adjusting the utility functions.
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