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Abstract— In foraging behavior, where an animal searches for 
food caches, it is imperative for the animal to remember the 
locations and routes to these caches. An important consideration 
is the means by which the organism takes the appropriate actions 
to lead it to a goal that satisfies a particular need. We introduce a 
time-dependent plasticity rule that biases movement in a 
particular direction by developing asymmetric neuronal 
receptive fields through experience. The model contains 
hippocampal areas that respond differentially to locations in 
space, frontal cortex areas that respond to different salient cues 
from the environment, and neuromodulators that respond to 
rewards and costs. This model suggests a means by which 
neuromodulated time-dependent plasticity in the frontal cortex 
can facilitate action selection. It also suggests how these neuronal 
responses may lead to successful performance in a foraging task.  
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I. INTRODUCTION 
In foraging behavior, where pathways to food sources must 

be remembered, an animal selects a series of actions to acquire 
these sources [1]. The environment and the organism’s internal 
state can influence these choices.  

Theoretical and experimental work has identified the 
dopaminergic system as a possible neural correlate of reward 
expectation [2]. Alternatively, it has been suggested that the 
dopaminergic system signals the occurrence of novel events to 
facilitate action to outcome associations [3]. Based on these 
notions, reinforcement learning and temporal difference 
learning have been posited as a means to learn pathways to 
reward locations [4-6]. In these models, changes in expected 
reward reinforce actions that lead to goal locations. 

An alternative means for assigning credit to actions that 
lead to goals may be brought about by experience-dependent 
changes to the shape of neuronal receptive fields. For example, 
hippocampal place fields may become asymmetric through 
LTP in the hippocampus in a way that leads to the prediction of 
motor sequences [7]. Mehta and colleagues showed that rat 
hippocampal place cells become skewed with experience and 
showed that this asymmetry could emerge through spike-timing 
dependent plasticity or STDP [8]. After experience, the shape 
of the place field became skewed such that activity increased as 
it approached a location and decreased sharply as it passed 
through that location. As a result, the rat’s direction of travel 
could be inferred from the shape of these asymmetric place 
fields. 

In this paper, we extend the notion of asymmetric 
hippocampal place fields to frontal cortical areas and replace 
the simple reward system used in previous modeling studies [4-
7], with multiple reinforcers that encode different 
environmental cues and internal states. We present a model of 
neuromodulated time-dependent plasticity, in which a 
simulated agent learns pathways to rewards of varying saliency 
while avoiding obstacles. The type of reward it seeks depends 
on its internal state or drive. The model suggests a means by 
which frontal cortical areas and neuromodulators may work in 
concert to produce effective behavioral strategies. 

II. METHODS 

A. Simulation Environment and Experimental Protocol  
The simulated agent explored a virtual environment that 

consisted of a 16x16 grid of locations (see Figure 1A). At the 
start of a trial, two rewards, two obstacles, and the agent were 
placed randomly at grid locations in the environment. To make 
the foraging task challenging, the two rewards were at least 8 
locations away from each other. The two obstacles had a 
diameter of 4 grid locations. If the agent attempted to move 
into a location where an obstacle resided or beyond the 
boundaries of the environment, it stayed at its current location 
until the next simulation cycle. In each simulation cycle of the 
trial, the activities of the neurons, the strength of the 
connections, and the position of the agent were updated as 
described below. A trial lasted 2500 simulation cycles. At the 
start of the trial, the saliency for the first reward, S1, was set to 
1 and the saliency for the second reward, S2, was set to 0. 
When the first reward, R1, was found, S1 was set to 0 and S2 
was set to 1. The saliency for rewards toggled in this manner 
throughout the trial. 

B. Neural Simulation 
A neural simulation was constructed that contained regions 

which loosely corresponded to the hippocampus and frontal 
cortex (see Figure 1B). The simulation contained a 
hippocampal area, CA3, which had place fields centered at 
locations in the virtual environment. Neurons in CA3 projected 
to neurons in a CA1 area that in turn projected to neurons in 
three different frontal areas; (1) FCR1 – an area that responded 
to a particular reward type (R1) and salience (S1), (2) FCR2 – 
an area that responded to reward R2 and salience (S2), and (3) 
FCD – an area whose response was positively correlated with 
the agent’s progress or distance covered. All of the synaptic 



connections in the simulation were subjected to 
neuromodulated time-dependent plasticity (see Figure 2A). The 
neuromodulators could be reward related, NMR, or related to 
the distance traveled by the agent, NMD. 
 

 
Figure 1. A. Foraging task environment consists of a 16x16 grid of locations, 
two types of rewards (R1 and R2), obstacles, and an impenetrable perimeter. 
B. Neural simulation architecture. The simulated nervous system consists of 
five neural areas each having 256 (16x16) neurons. There are two simulated 
hippocampal areas that respond to place; CA3 and CA1, and there are three 
simulated frontal cortex areas that respond to saliencies, such as rewards; 
FCR1 and FCR2; and distance traveled FCD. Each neuron in CA3 responds 
preferentially, with a two-dimensional Gaussian tuning curve, to the location 
specified by its Cartesian coordinate (x,y). The synaptic connectivity of the 
network is uniform such that each pre-synaptic neuron, at a given Cartesian 
coordinate (x,y), projects to nine post-synaptic neurons centered around (x,y). 
All synaptic connections are subject to a neuromodulated time-dependent 
plasticity learning rule. The neuromodulators can be reward related (NMR) or 
cost related based on distance traveled by the agent (NMD). 

Each neural area consisted of a two-dimensional grid of 
neurons (16x16), where each neuron corresponded to a 
location in the virtual environment. Each pre-synaptic neuron 
in one area projected to nine post-synaptic neurons in another 
area, centered on the corresponding location of the pre-
synaptic neuron (see Figure 1B). All the neurons in the model 
had an activation function where activity ranged from 0 (i.e. 
quiescent) to 1 (i.e. maximally active).  

 
Figure 2. A. The timing dependent plasticity (TDP) function. The chart shows 
the amount of long-term potentiation (LTP) or long-term depression (LTD) 
that is applied to synaptic connection strength plasticity. The variables tpost 
and tpre, which represent simulation cycles, are indices into the times of pre- 
and post-synaptic activations of a neuron. The TDP rule ranges from 10 time 
steps forward (tpost ≥ tpre) to 10 steps backward (tpre < tpost). When tpost 
equals tpre, LTP is maximal at 0.10 and decays exponentially, with a time 
constant of -0.1, as tpost-tpre becomes larger. When tpost-tpre equals negative 
one, LTD is maximal at 0.13 and decays exponentially, with a time constant 
of -0.1, as tpost-tpre becomes smaller. B. Activity-based action selection. A 

new heading is chosen based on the summed activity of FCD, FCR1, and 
FCR2. The sum consists of the activity of three neurons, shown in grey, along 
one of eight headings from the current position. A softmax function is used to 
select between eight different headings.  See text for details. 

The CA3 region of the model contained neurons that 
responded preferentially to locations in the environment. Each 
neuron had a unique location that it responded to with the 
maximum firing rate. The preferred locations of the 16x16 CA3 
neurons were such that they uniformly covered the 
environment. The firing rate ranged from maximally active at 
the preferred location to quiescent at locations far from the 
preferred one according to the following Gaussian tuning curve 
function: 
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where i specifies the neuron in the CA3 area, t is the 
simulation cycle, p(t) represents the location of the agent in the 
environment, si represents the preferred location of CA3 neuron 
i, and rnd returns a random number uniformly distributed from 
-0.05 to 0.05. 

CA1 neural activity depended on synaptic input from the 
CA3 region. A CA1 neuron’s activity was calculated based on 
the following equation: 
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where i specifies the neuron in the CA1 neural area, j is the 
index into the CA3 neural area, w is the synaptic weight from 
CA3 neuron j to CA1 neuron i. 

FCR1 neural activity depended on the agent’s internal state 
(S1), its proximity to a reward (R1), and synaptic input from 
the CA1 region. In the agent simulations, it was assumed that 
the agent could sense a nearby reward and this would lead to 
activation of FCR1. Each FCR1 neuron’s activity was 
calculated by the following equation: 

! 

FCR1 i,t+1( ) = tanh S1*exp
"

2
p t( ) " is( )
8

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
*exp

"
2

p t( ) " R1( )
8

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

+ CA1
j=1

9

) j,t( ) * CA1*FCR1w i, j,t( )
# 

$ 
% % 

& 

' 
( ( 

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

+ rnd "0.05,+0.05( )

  (3) 

where S1 is the saliency drive for reward R1, and w is the 
synaptic weight from CA1 neuron j to FCRC1 neuron i.  

FCR2 neural activity was determined similar to a FCR1 
neuron except that the response is based on saliency S2 and 
reward R2. 

FCD neural activity depended on synaptic input from the 
CA1 region. The activity function of a FCD neuron was 
calculated by the following equation: 
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where w is the synaptic weight between CA1 neuron j to 
FCD neuron i. 



C. Synaptic Plasticity 
All synaptic connections in the model were subject to an 

experience-dependent plasticity rule that took into account the 
timing of pre- and post-synaptic activity (see Figure 2A), as 
well as amplification of learning through simulated 
neuromodulators (see Figure 1B). In this learning rule, the 
direction of change in connection strength between a pre- and 
post-synaptic neuron was determined by the timing of activity 
similar to STDP [9, 10]. However, in the time-dependent 
plasticity rule presented here the magnitude of change was 
based on firing rate as opposed to spikes. Furthermore, the 
level of simulated neuromodulators dictated synaptic change.  

Neuromodulator levels were determined by a reward 
evaluation function (NMR) and a distance traveled cost function 
(NMD).  

NMR was set either due to the agent being at the reward or 
due to the activity of neural areas FCR1 and FCR2. 
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where p(t) represents the location of the agent at time t, i 
represents the index into the neural areas that corresponds to 
location p. 

The NMD was proportional to the distance traveled by the 
agent. 
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where Δt is equal to 10 simulation cycles. 

The weights from CA3 to CA1 were modulated by both 
NMR and NMD, the weights from CA1 to FCR1 and FCR2 were 
modulated by NMR, and the weights from CA1 to FCD were 
modulated by NMD (see Figure 1B). The change in weight was 
calculated as follows: 
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where t is the index into the current simulation cycle, i is 
the index of the post-synaptic neuron, j is the index of the pre-
synaptic neuron, δ is the learning rate which is set to 0.25 for 
learning agents and 0.0 for the no learning agents, tpre and 
tpost are simulation cycle indices, T is equal to 10, a(j,tpre) is 
the activity level of pre-synaptic neuron j, a(i,tpost) is the 
activity of the post-synaptic neuron i, TDP is the time-
dependent plasticity function that dictates the direction and 
magnitude of change (see Figure 2A), and NM is the level of 
neuromodulator in the system.  

D. Action Selection 
After each simulation cycle, the agent selected a new 

heading and position based on the summed activity of the FCD, 
FCR1, and FCR2 neural areas. From this combined activity, 
eight population vectors were calculated by summing over the 
activity of three neurons radiating from the current position 
toward a one of eight headings (see Figure 2B). A softmax 

algorithm was used to create a probability distribution of 
possible headings from these population vectors: 
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where hdg and h represent one of 8 headings, phdg is the 
probability of selecting a new directional heading, is ahdg and ah 
are the summed activities of FCD, FCR1, and FCR2 for a 
given heading (see Figure 2B). A new heading was selected 
based on the probabilities derived from this softmax function. 
Similar to Foster and colleagues [5], momentum of the agent’s 
heading was modeled by a mixture of 25% from the softmax 
function and 75% of the previous heading. This restricted the 
turning curve of the agent, and was particularly important early 
on, when the whole environment must be searched fairly 
quickly. The new (x,y) position of the agent was calculated 
from the cosine and sine of the new heading. 

III. RESULTS 
The simulated agent’s task was to find two different reward 

sources, avoid obstacles, and circumvent impasses (see Figure 
1A). It was assumed that the agent needed only one reward 
type at a time and that after finding that reward source it was 
sated. This need was modeled by the agent’s internal state. For 
example, initially the agent’s internal state dictated that it was 
“hungry” and in need of food. After finding the food source, 
the agent’s internal state dictated that it was “thirsty” and 
needed water.  

The simulated agent’s ability to learn an effective search 
strategy in a foraging task was judged by comparing the 
simulated agent’s performance with learning to the 
performance of a group of agents that had learning disabled. 
Experiments with both the learning group and the no learning 
group consisted of 100 trials of 2500 simulation cycles each.  

A. Behavioral Results 
The learning group found significantly more rewards than 

the group with learning disabled (see Figure 3). Lesions of 
either the FCR or FCD frontal areas significantly degraded the 
agent’s performance. The superior performance of the learning 
group was reflected in its search strategy. Search metrics, 
which are used to analyze foraging performance of biological 
organisms [11-13], were applied to the performance of the 
model. The learning group’s trajectory was significantly 
straighter than the no learning group (see Straightness in 
Figure 4), and its foraging was more focused than the no 
learning group (see Thoroughness in Figure 4). Figure 5 shows 
trajectories from two different trials in which the agent shuttles 
between different reward sources while avoiding obstacles. 



 
Figure 3. Average number of rewards per trial under different conditions. 
Error bars denote standard error. The number of rewards found by the 
Learning group were significantly larger than the No Learning group (p << 
0.001, Wilcoxon rank sum test), than the No FCD group (p < 0.02, Wilcoxon 
rank sum test), and than the No FCR group (p << 0.001, Wilcoxon rank sum 
test).  

 
Figure 4. Search metrics for the performance of the simulated agents. The 
path trajectory was significantly straighter for the Learning group than the No 
Learning group (p << 0.001, two-sample Kolmogorov-Smirnov goodness-of-
fit hypothesis test). The thoroughness of the exploration was significantly 
smaller for the Learning group than the No Learning group (p << 0.001, two-
sample Kolmogorov-Smirnov goodness-of-fit hypothesis test).  

B. Neuronal Responses During Behavior  
The trajectories of the agents, shown in Figure 5, were 

reflected in the patterns of connection strengths that developed 
due to neuromodulated time-dependent plasticity (see Figure 
6). Pathways that led to rewards were reflected by strong biases 
in connection strengths toward those rewards (see CA1FCR1 
and CA1FCR2 in Figure 6). Moreover, pathways in which 
the agent made progress or covered distances effectively were 
reflected in strong biases in connection strengths that led to 
increased neural activity in locations away from obstacles and 
borders (see CA1FCD in Figure 6). The route the agent took 
could be inferred by combining these weights (see Sum of 
Weights in Figure 6). 

The weight biases were brought about by the 
neuromodulated TDP learning rule (see Methods, and Figure 
2A) and resulted in asymmetric place fields. A measure of 
asymmetry, the Firing Rate Asymmetry Index (FRAI), was 
calculated for the neuron’s receptive fields:  
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FRAI =
F1" F2

F1+ F2
;  (9) 

where F1 is the sum of activity of a neuron during the three 
time steps prior to reaching the neuron’s initial preferred 
location, and F2 is the sum of activity of a neuron during the 
three time steps after passing through the neuron’s initial 
preferred location. A value of FRAI close to zero would signify 
a symmetric receptive field, whereas a positive value of FRAI 
would denote anticipatory activity as the agent approaches a 
location. 

 
Figure 5. Sample trajectories of two representative agents. The first reward, 
corresponding to one salience, is denoted by an open green square, and the 
second reward, corresponding to another salience, is denoted by an open blue 
square. Obstacles are shown as red circles. The filled circles denote the 
agent’s position and the diameter of the circles denote the agent’s trajectory 
from beginning (smaller circles) to finding the reward (largest circles).  

 
Figure 6. Connection strengths for the synaptic projections in the neural 
simulation. The arrows in the figures denote the vector summation of the 
synaptic weights from a pre-synaptic neuron (tail of arrow) to the nine post-
synaptic neurons. The direction of the arrow points to the most strongly 
connected post-synaptic neurons and tends to predict the direction of 
simulated agent’s movement. A. Connection strength vectors for a 
representative simulation trial (Trial 15). Upper-left. CA1 to FCD. Upper-
right. Connection strengths from CA1 to FCR1. Lower-left. Connection 
strengths from CA1 to FCR2. Lower-right. Summation of the weight vectors 
CA1FCD, CA1FCR1, and CA1FCR2. B. Connection strength vectors 
for a representative simulation trial (Trial 81). 

Experience resulted in a skewing of receptive fields such 
that neuronal activity was anticipatory of a future location (see 
Figure 7). The place fields of neurons in CA3, which did not 
have plastic connections, stayed symmetric throughout the trial. 
However, neurons that did have plastic connections (e.g. CA1, 



FCD, FCR1, and FCR2) became significantly positively 
skewed with experience. This predictive response arises from 
the learning rule (see Equation 7), in which weights were 
potentiated when the pre-synaptic activity preceded the post-
synaptic activity on pathways that led the agent toward rewards 
or unimpeded progress. 

 
Figure 7. Median Firing Rate Asymmetry Indices (FRAI; see equation 9) for 
neural areas in the model. The FRAIs are compared between the first quarter 
of a trial (Early) and the last quarter of a trial (Late). With the exception of 
CA3 (p > 0.01; Wilcoxon rank sum), the Late FRAIs were significantly larger, 
denoted by an asterisk, than the Early FRAIs (p << 0.01; Wilcoxon rank sum). 

 
Figure 8. Rate maps for neurons in different neural areas. Each pixel indicates 
the mean activation of the neuron when the agent was in that particular 
location of its environment. The activation level is denoted by a grey scale 
where white represents no activity and black represents maximum activity. A. 
Rate maps for neurons that initially have a preferred location at coordinates 
(5,3) in the neural areas CA3, CA1, FCD, FCR1, and FCR2 during Trial 15. 

The green square denotes the location of the reward (R1) the agent is 
approaching. B. Rate maps for neurons that initially have a preferred location 
at coordinates (14,5) in the neural areas CA3, CA1, FCD, FCR1, and FCR2 
during Trial 81. The green square denotes the location of the reward (R2) the 
agent is approaching. Note that the neuron in CA3 is symmetric about its 
location in space, whereas other areas have developed asymmetric place 
fields. 

Figure 8 shows representative examples of asymmetric 
place fields. In Figure 8A, the neurons have initial preferred 
locations at coordinates (5,3). After experience these receptive 
fields, with the exception of CA3, became predictive of where 
the agent intended to move; in this case the reward location 
marked in green. Note that since the agent was searching for 
reward R1, the neural area FCR2 is relatively inactive. 
Similarly, receptive fields in Figure 8B show a shift from their 
initial preferred location of (14,5) that is anticipatory of the R2 
reward location marked in green. 

After experience in the environment, the path selected by 
the agent, which was based on the population activity of the FC 
neural areas, became biased towards rewards (see Figure 9). 
After foraging experience, the center of population activity 
tended to be away from the agent’s current position (red marker 
in Figure 9) and towards a reward location (green marker in 
Figure 9). The shift of activity towards the reward is a direct 
consequence of the changes in synaptic plasticity with stronger 
weights pointing towards reward locations (see Figure 6) and 
the asymmetry of the place fields was such that the neurons fire 
in anticipation of moving towards a reward location (see Figure 
8). 

 
Figure 9. Summation of neural activity of areas FCD, FCR1, and FCR2 when 
simulated agent was in a given location (denoted by the red pixel). Each pixel 
indicates the summated activation of a neuron, where the activation level is 
denoted by a grey scale where white represents no activity and black 
represents maximum activity. The green pixel denotes the location of a 
reward. Note that the population of activity tends to be skewed toward the 
reward location. A. Summation of activity towards the end of Trial 15. B. 
Summation of activity towards the end of Trial 81.  

Taken together, these results show that a learning rule that 
took into account the temporal dynamics of neural activity, 
combined with modulators that were tied to particular 
saliencies of the environment and the agent’s internal state 
were sufficient for learning routes between reward locations 
and around obstacles.  

IV. DISCUSSION 
We have shown that a model having a learning rule 

dependent on the timing of neuronal activity and the 



neuromodulation by multiple reinforcers, can develop effective 
search strategies for foraging behavior (see Figures 3 through 
5). In this model, there was reinforcement from two different 
reward types, as well as a cost function in which reinforcement 
was proportional to distance traveled. The agent discovered 
reward locations and passable areas of the environment through 
experience-dependent learning. Together, these reinforcement 
signals were sufficient for shaping the neuronal connectivity 
such that the agent navigated towards a particular goal 
depending on its internal state while avoiding obstacles (see 
Figure 6). Navigation performance was evaluated by not only 
the rewards found, but also by the manner in which the agent 
explored its environment (see Figure 4). The learning agent 
took straighter paths (i.e. higher straightness values) and had a 
more focused search pattern (i.e. lower thoroughness values) 
than the no learning agents and the agents with lesions to its 
frontal cortex. 

In our model, the routes leading to rewards did not rely on 
changes in expected value [2, 5], but rather on directionally 
asymmetric neural activity brought about by time-dependent 
plasticity and exploration [7]. There is evidence, from rodent 
hippocampal recordings, that experience can alter the shape of 
neuronal activity from symmetric about a place to skewed in 
the direction of a familiar pathway [8]. Our model incorporated 
a time-dependent plasticity rule, which was sufficient to 
generate asymmetric place fields hippocampal region of the 
model, and extended this notion to the frontal cortical regions 
of the model.  

The asymmetric neuronal responses brought about by time-
dependent plasticity suggest that activity in the frontal cortex 
may be skewed such that the response becomes predictive. 
There is evidence of anticipatory activity in the frontal cortex 
that leads to decisions in simple discrete choice tasks [14-16].  
Furthermore, there is evidence that different areas of the frontal 
cortex encode different reward types, as well as the cost of a 
decision [17-20].  

The model also assumes that different neuromodulatory 
systems respond to different environmental stimuli. Besides the 
dopaminergic (DA) system, which appears to drive reward 
anticipation [2], other neuromodulators may be related to the 
cost neuromodulator (NMD) in the present model. For example, 
the serotonergic (5-HT) system influences risk aversion [21], 
the cholinergic (ACh) system is related to the level of 
attentional effort [22], and the noradrenergic (NE) system 
appears to respond to novel or salient objects [23]. 

The model presented here suggests how different areas of 
the forebrain, which evaluate different rewards and costs, may 
work in concert with neuromodulatory systems to develop 
effective behavioral repertoires. 
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