
From Pixels to Policies: A Bootstrapping Agent

Jeremy Stober and Benjamin Kuipers

Department of Computer Sciences

The University of Texas at Austin

1 University Station, Austin, TX 78712, USA

Email: {stober, kuipers}@cs.utexas.edu

Abstract—An embodied agent senses the world at the pixel level
through a large number of sense elements. In order to function
intelligently, an agent needs high-level concepts, grounded in the
pixel level. For human designers to program these concepts and
their grounding explicitly is almost certainly intractable, so the
agent must learn these foundational concepts autonomously.

We describe an approach by which an autonomous learn-
ing agent can bootstrap its way from pixel-level interaction
with the world, to individuating and tracking objects in the
environment, to learning an effective policy for its behavior.
We use methods drawn from computational scientific discovery
to identify derived variables that support simplified models
of the dynamics of the environment. These derived variables
are abstracted to discrete qualitative variables, which serve as
features for temporal difference learning. Our method bridges the
gap between the continuous tracking of objects and the discrete
state representation necessary for efficient and effective learning.

We demonstrate and evaluate this approach with an agent ex-
periencing a simple simulated world, through a sensory interface
consisting of 60,000 time-varying binary variables in a 200 x 300
array, plus a three-valued motor signal and a real-valued reward
signal.

I. INTRODUCTION

A central goal of developmental robotics is to show how

an autonomous robot can go from the “blooming, buzzing

confusion” of raw sensory experience to useful high-level

knowledge. For common sensor configurations, a situated

robot’s experience of the real world is continuous and high-

dimensional. For many tasks, the robot only needs access

to a small set of state variables derived from this sensory

signal, and by extension from the environment. A key part

of this process is learning to track and act on objects in the

environment.

To accomplish these basic tasks requires that an agent first

develop a primitive understanding of its own sensorimotor

capabilities, including the geometry of its sensor space. Pre-

vious work on sensorimotor reconstruction [1], [2] provides

methods for generating geometric models of sensor arrays

based on data collected during undirected experience. Even

with known sensor geometry the agent faces a considerable

challenge in extracting a useful model of world interaction

from uninterpreted changes in its sensor field.

Our learning agent attempts to meet this challenge through a

sequence of progressively more informative models of sensor

state (Figure 1). The agent does not have access to the

laws governing state evolution. It only has access to a high-

dimensional visual signal representing the current sensory

image of the environment (Figure 2).

Fig. 1. Our agent generates a policy over high level states that are a
result of bootstrapping from clusters in raw sensory space. Our primary
contribution (boxed) is a method of qualitative abstraction over derived
terms that bridges the gap between the continuous state representation of
the underlying environment provided by trackers and discrete decisions that
constitute a policy. We refine the state representation by evaluating the
individual policy contributions of qualitative variables.

Inspired by the use of trackers to anchor perceptual symbols

in the sensor stream [3], [4], we build and maintain a low-

dimensional representation of the world state in terms of

connected components in the visual image provided by the

environment. To accomplish this, we adapt a method for

tracking and categorization of objects used in [5]. The tracker

model provides a low-dimensional description of the state of

the environment in terms of the dynamic properties of objects

that change over time, which we refer to as surface variables.

From a developmental robotics perspective, a low-

dimensional, high-level representation of the world state pro-

vided by trackers and associated perceptual functions provides

a non-task-specific abstraction. To test the efficacy of this

abstract representation we consider the resulting worldstate

representation in the context of a natural reward signal. The

resulting domain is a reinforcement learning problem. Since

each sensor image contains no velocity information, the raw

state signal is not Markov.

We treat the dynamic properties (surface variables) of

trackers in this domain as continuous. Reinforcement learning

agents in continuous state spaces experience a limited subset

of possible states during training. In order to extend a learning

agent’s policy to novel states, the agent must generalize from

previous experience. Algorithm designers incorporate function

approximation, and its attendant state representation, into algo-

rithms in order to accomplish this needed generalization. With

existing methods of function approximation, a certain amount

of design is required to marshall the state representation into a

form that is both convenient and harmonious with the chosen

method of function approximation.

Without a designer in the loop, a bootstrapping agent faces

the difficult problem of autonomously determining the best

state representation given the available methods of function

approximation. In order to evaluate the efficacy of a rep-

resentation, the agent must attempt policy search using the

representation. The success of this policy search provides the

feedback needed for representation search.

Given a set of continuous surface variables describing the

behavior of the environment at a high level, we apply the

classic methods of BACON [6] to generate new derived

variables by simple algebraic transformations of the available

surface variables. Then, in order to transform the continuous

description into a discrete form convenient for policy learning,

we apply methods from qualitative reasoning [7] to form

qualitative variables using natural landmarks.

We demonstrate how the resulting state representation can

be evaluated in terms of the policy contributions of the derived

qualitative state variables, and how, if necessary, qualitative

state variables can be pruned from the representation. With au-

tonomous methods both for generating representations and for

pruning those representations, our agent can couple its search

for a good policy with its search for a good representation.

Methods for clustering and tracking are varied and well

studied [8]. Solving reinforcement learning problems through

temporal difference methods are also explored extensively in

the literature [9], [10]. Our main contribution is providing a

method of autonomously bridging the gap between knowledge

of state grounded in object tracking and the state representation

required for effective temporal difference learning. We divide

this contribution into two components drawn from existing lit-

erature, computational scientific discovery [6] and qualitative

abstraction [7], which generate new candidate state features,

and a novel component, representation refinement, that seeks

to refine the choice of state representation for the bootstrapping

agent.

II. AGENT ARCHITECTURE

A. Formation of Trackers

In the simulated domain shown in Figure 2, the agent begins

the bootstrapping process by learning a pixel-based static-

world model. During the learning period, the agent determines

the mode (most common value) z̄i for each pixel zi in the pixel

vector z based on observational experience. Using this static-

world model of the environment, the agent defines a stochastic

model of its experience. The pixel vector at time t is given by

zt = z̄ + ǫ1 (1)

where ǫ1 is a random variable describing the discrepancy

between the prediction z̄ and the observation zt. An active

pixel is any pixel which violates the static world model, i.e.

Fig. 2. We evaluate our approach using a simulated video game environment
whose primary sensory output is a grid of 300x200 binary pixels. The agent
must discover some low-dimensional representation of the environment state
based on this visual image. The agent controls both paddles, which it can
synchronously move up, down, or hold steady. The puck bounces off the top
and bottom walls, and exits through the ends. The agent receives a reward
of +1 every time the agent hits the puck with a paddle and a reward of −1
every time the puck leaves the playing surface. When the puck leaves the field
it is reset to the center with an x velocity of 3.0 and a random y velocity in
the range (−0.5, +0.5).

zi
t 6= z̄i. In this model, dynamic change is treated as noise,

described only by the ǫ1 term.

During the next step of bootstrapping, the agent must

account for the discrepancy between the background model z̄

and present state of the agent’s sensors. By finding connected

components of active pixels, the agent constructs a model that

accounts for the current active pixels. From each connected

component, the agent extracts a set of properties, including

the centroid position, area, and perimeter for each component

[11]. We denote functions that extract properties from active

pixel clusters perceptual functions and the resulting properties

percepts.

The percepts for each component provide the agent with

a model which accounts for some active pixel discrepancies.

Each new timestep, however, results in a new set of discrep-

ancies, and therefore a new set of connected components. To

account for temporal discrepancy, the agent associates con-

nected components by identifying clear successor components

in subsequent timesteps. Temporal association of component

feature sets gives rise to the notion of trackers.

Each tracker maintains a set of static and dynamic percepts.

For a new tracker τ , all percepts for a connected component

are in the the set of static percepts Sτ . The set of dynamic

percepts Dτ is initially empty. The tracker maintains a set of

percepts ∆τ,t that change at timestep t. At time T , the set of

static and dynamic tracker percepts are given by

Sτ =

T⋂

t

(P −∆τ,t) and Dτ =

T⋃

t

∆τ,t

where P denotes the set of all percepts.

At each time-point, the percepts of each newly-identified

component are associated with an existing tracker if there is a

clear best match within a threshold δ. Otherwise, a new tracker

is created. We extend this by allowing a tracker to lose sensory

support for a short time period, provided that the tracker

reacquires sensory support within the same threshold. The

current time-limit for tracker persistence is two timesteps. This

method of temporal association is based on resource allocating

TABLE I
THREE CONNECTED COMPONENTS EMERGE FROM CLUSTERING ACTIVE

PIXELS. WE USE THE STATIC PERCEPTS TO IDENTIFY THE ORDERING OF

DYNAMIC STATE AT THE BEGINNING OF EACH EPISODE. THE DYNAMIC

PERCEPTS ARE surface variables.

Percepts

Object Static Dynamic

Puck areap, perimeterp xp, yp

Left Paddle areal, perimeterl, xl yl

Right Paddle arear, perimeterr, xr yr

TABLE II
THE DERIVED VARIABLES RESULTING FROM APPLICATION OF DERIV AND

DIFF TO SURFACE VARIABLES FROM TABLE I.

DERIV d(xp), d(yp), d(yl), d(yr)

DIFF
yl − xp, yl − yp, yl − yr

yr − xp, yr − yp, xp − yp

vector quantization [12], though we expect that other forms of

unsupervised clustering would work equally well [13], [14].

Between episodes in the reinforcement learning problem de-

scribed below, the puck and paddles are reset to their respective

starting positions. This discontinuous change results in new

trackers. We use static percepts to establish a correspondence

between new and old tracker state variables. Table I describes

the distinguishing characteristics of dynamic objects in the

environment.

By using trackers, the agent can create a model

zt = z̄ +
∑

τ

φ(τ) + ǫ2 (2)

that combines the previous static model z̄ with the projection

into pixel space φ of each currently active tracker τ . Pixels that

are not explained by the tracker or static models are treated

as noise, described by the ǫ2 term.

B. Computational Scientific Discovery

As a result of tracking and categorization, the agent has

access to a stable set of four continuous dynamic state vari-

ables corresponding to the puck coordinates (xp, yp) and the

vertical locations yl and yr of the two paddles. In order to

evaluate this state representation, we appeal to the natural

reward structure of the simulated video game, and examine

how well a reinforcement learning algorithm performs given

this state representation.

Since applying temporal difference methods to continuous

state spaces directly is problematic, our agent must first

generate a discrete representation of game state. Inspired by

the results of computational scientific discovery [6], and the

observation that good representations may require concepts

that are not apparent from surface variables alone, the agent

uses two heuristics to generate a set of derived variables.

The first heuristic, DERIV, calculates the derivative d(si) of

each continuous surface variable. The second heuristic, DIFF,

adds to this set the differences si − sj between every pair

of continuous surface variables. The complete set of derived

variables appears in Table II.

We note that for this scenario, the continuous state repre-

sentation is Markov when we include derivative terms to the

set of variables describing the game state.

C. Qualitative State

Due to the difficulty of learning from the continuous state

space directly, we adopt a method of discretization drawn

from qualitative reasoning [7]. After application of DERIV and

DIFF, we generate qualitative values based on the resulting set

of derived terms. These terms have natural landmark values at

zero, indicating the steady state in the case of derivative terms

and equality in the case of difference terms. Each landmark

value divides the domain of each derived variable into three

qualitative values, [−], [0], [+], which serve as features for

reinforcement learning.

Since the surface variables offer no natural landmarks, we

do not include them in the set of qualitative features for

reinforcement learning. Extensions to this method that allow

for landmark distinctions based on experience are discussed

later.

D. Reinforcement Learning

The process described above constitutes a method of state

abstraction, taking 60,000 binary pixels (or 260,000 possible

states) to ten qualitative variables consisting of three values

each (or 310 possible states). In every state, the agent has

three choices for actions A = {up, down, steady}. To apply

a method for solving the reinforcement learning problem

described below, we consider each qualitative variable as

a feature which can take on three values. We then apply

linear gradient descent Sarsa(λ) over the qualitative feature set

QF by associating each element of QF × A with a weight

θ : QF ×A −→ ℜ (Algorithm 3). The value of a given state

and action is the sum of the currently active weights indexed

by QF ×A.

E. Representation Refinement

Complete cognitive architectures that utilize temporal dif-

ference methods for reinforcement learning need to generate

expressive representations over which value function estima-

tion via temporal difference learning can take place. However,

some of the generated features may not be necessary when

learning an optimal policy. In fact, additional features increase

the size of the search space and so can slow or disrupt learning.

We utilize a method we term representation refinement (Figure

4) in order to prune the features generated in the application

of DERIV, DIFF and qualitative abstraction.

By running with only subsets of the qualitative feature set

enabled, an agent can evaluate the contribution of individual

qualitative state variables to its overall performance. We refer

to this as the effective policy contribution of a variable. We

evaluate two heuristics for determining the effective policy

contribution of a qualitative variable. The first, termed leave

one out, disables the weights associated with the qualitative

variable under consideration for removal. If the performance

of the agent policy, e.g. the reward accumulated over the

θ ←− 0̄
for all episodes do

e←− 0
s, a←− initial state and action of episode

QFs ←− qualitative values present in s

repeat

for i ∈ QFs do

e(i, a)←− e(i, a) + 1
end for

Take action a, observe reward r and state s

δ ←− r −
∑

i∈QF
s

θ(i, a)
QFs ←− qualitative values present in s

for b ∈ A do

Qs(b)←−
∑

i∈QF
s

θ(i, b)
end for

a←− argmaxb∈A(Qs(b))
δ ←− δ + γQs(a)
θ ←− θ + αδe

e←− γλe

until episode ends

end for

Fig. 3. Linear gradient-descent Sarsa(λ) with qualitative features as applied
to the simulated Pong domain. The set of weights θ and the eligibility traces
ē are indexed by the set of active qualitative values in the current state and
action being considered. Note that the set of active qualitative values QFs is
updated after δ is initialized, since δ needs to be initialized using the weights
associated with the state and action from the previous iteration. The argmax
of the action-value function Qs determines the best action in the current
state. γ = 0.9 is the discount factor used to determine the present value of
future reward. α = 0.01 is the learning rate, which determines the extent that
temporal difference error affects the feature weights. λ = 0.9 determines the
decay rate of the eligibility traces ē, modulating the amount of credit a past
action should receive for a current reward. Adapted from [9].

episode, remains the same, we remove the qualitative variable

from the representation. The second heuristic, termed leave

one in, enables only the weights associated with the variable

being evaluated. If the reward accumulated over the episode

remains the same, indicating that the enabled weights encode

a good policy, we keep the qualitative variable as part of the

representation.

We note that the leave one in heuristic optimistically as-

sumes that good policies do not depend on the interaction of

two or more variables. The leave one out heuristic addresses

this concern, but in practice seems to result in a more conser-

vative refinement process, one that does not remove as many

features. This method demonstrates correspondingly weaker

performance in our experiments below.

Representation refinement uses the reward signal to evaluate

the effective contribution of each state, though instead of

updating a value function, we use reward received as a

criteria for refining the state representation. This reduces the

expressive power of our agent’s representation, thus limiting

the search space to only those states that demonstrate policy

relevance. Our method of discovering irrelevant features falls

into the class of π∗-irrelevant (policy irrelevant) abstraction

methods [15].

F ←− set of state features

refined←− false

for all episodes do

train policy over F ×A
if episodic reward ≥ threshold and !refined then

for all f ∈ F do

if contribution(f) ≤ threshold then

remove f from F
end if

end for

refined←− true

end if

end for

Fig. 4. A pseudo-code description of the representation refinement process.
This process requires a method for evaluating the policy contribution of a
state feature and a method for measuring cumulative reward over an episode.

III. EVALUATION

Using this qualitative state representation, and a reward

signal that is +1 when the puck hits a paddle, −1 when the

puck leaves the playing surface, and 0 otherwise, we train

an agent using Sarsa(λ) linear gradient descent with greedy

action selection (Algorithm 3) using parameters λ = 0.9, γ =
0.9, α = 0.01. At the beginning of an episode, both paddles

and the puck are reset to their center positions. The x velocity

of the puck is set to 3.0 and the y velocity is uniformly drawn

from (−0.5,+0.5). An episode ends when the puck leaves

the playing surface. To limit computation time, episodes are

capped at 1000 timesteps.

We compared four agents: a motor-babbling (random action)

agent, an agent using Sarsa(λ) and the full learned state

representation (Table II), and two agents using Sarsa(λ) with

variants of representation refinement (Figure 4). We set the

reward threshold to five. When an agent using representation

refinement passes the threshold, it halts training and evaluates

the effective policy contribution of each variable with either

the leave one in or leave one out methods.

We evaluate the performance of the agent over 30 episodes,

where performance is measured by the number of hits per

episode. Out of 200 random trials, 168 of the agents using the

entire state representation learn policies that reach the episode

cap in at least one episode. In the aggregate, these agents

clearly demonstrate policy improvement over the course of 30

episodes. Agents using representation refinement to improve

their state representation perform better than agents using

the entire state representation, since these agents limit their

search for better policies to the state space most relevant to

maximizing reward.

We found that representation refinement using the leave one

out method resulted in refined representations that preserved,

on average, more features than the leave one in method. We

expect that the differing sizes of the resulting refined spaces

explains the difference in performance between the two meth-

ods of refinement, and the agent that does no refinement. We

also note that though refinement is a policy preserving process,

0 5 10 15 20 25 30

2
4

6
8

Average Number of Hits per Episode

Episode

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
H

it
s

Agent Type

Sarsa (leave in)

Sarsa (leave out)

Sarsa

Random

Fig. 5. We ran 200 trials of an agent using Sarsa(λ = 0.9) for 30 episodes
each. The mean performance per episode is shown, along with 95% confidence
intervals. With each representation refinement strategy, the agent tested the
policy contribution of each state variable after it achieves at least 5 hits in
an episode, discarding those with minimal contribution. We omit the episodes
used for representation refinement since no policy improvement takes place
while testing the effective policy contribution of each state variable. We
include a random agent for comparison. In this experiment, all learning agents
perform significantly better than random, and agents that employ some form of
representation refinement perform better than agents that do no representation
refinement.

it is not a value function preserving process. High temporal

difference error after refinement may serve to reinforce the

refined policy, again resulting in a performance benefit.

We ran an additional experiment to compare the relative

contributions of discovery and qualitative reasoning to learning

performance over relevant state variables (Figure 6). We found

that agents using tile coding and qualitative representations of

ypaddle − ypuck performed significantly better than the agents

using tile coding over the original (ypaddle, ypuck) space.

The use of a qualitative representation provided an additional

learning performance increase over tile coding in the derived

(discovered) state space.

As Figure 7 illustrates, the number of potential states in a

naive tile coding representation of the state space of surface

variables far exceeds the number required to capture useful

policy components in this domain. Successful policies in our

domain seek to maintain an invariant ypaddle − ypuck = 0
in the derived qualitative state of the game. We expect that

synergies between the choice of state representation and ef-

fective policies may arise in many domains where rewards

correlate with maintaining (possibly derived) invariants in the

underlying dynamical system.

A bootstrapping agent autonomously generating its own

state representation prior to reinforcement learning has no

guarantee that all the qualitative states it generates are rel-

evant to reward-maximizing policies. Through representation

refinement, an agent is able to refine the state representation.

In Figure 6, we see that the qualitative state [ypaddle − ypuck]
has the most impact on policy effectiveness in this domain.

dyl dyr dxp dyp yl −− yr yl −− xp yl −− yp yr −− xp yr −− yp xp −− yp

Effective Policy Contribution by Qualitative State

Qualitative State Variable

A
v
e
ra

g
e
 H

it
s
 p

e
r

E
p
is

o
d
e

0
2

4
6

8
1
0

1
2

2 4 6 8 10

1
2

3
4

5
6

7

Average Number of Hits per Episode

Episode

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
H

it
s

Agent Type

QRpaddle−−puck

CMACpaddle−−puck

CMAC(paddle,, puck)

Fig. 6. The left chart shows the average number of hits over 40 episodes
for each qualitative state variable using the leave one in method. The policy
contributions of yr−yp and yl−yp generate significantly better performance
than any other qualitative state variables. We view the “simplicity” of the
best policy’s state representation as indicating that our agent is employing the
correct primitive operations to bridge the gap between surface variables and
state features. On the right we compare a Sarsa(λ) agent using a qualitative
representation of ypaddle−ypuck space to an agent using tile coding (CMAC
[16]) over the same space and over (ypuck, ypaddle). The number of hits for
the first 10 episodes of training were averaged over 50 trials. We note that the
discovery of the derived term ypaddle−ypuck provides a significant increase
in learning performance over the agent using tile coding in (ypuck, ypaddle)
space. In addition, agents using a qualitative representation show increased
performance over tile coding in the derived ypaddle − ypuck space.

IV. DISCUSSION AND FUTURE WORK

The qualitative state representation presented above pro-

vides an alternative to parametrized methods of sparse coding

[17] and is similar to methods of defining discrete state in

terms of distinguished values [18], [19]. A bootstrapping

agent, however, cannot depend on a prior specification of

“distinguished” values, or a highly-parametrized task-specific

representation, since the continuous state space and task are

unknown prior to the application of bootstrapping.

Our method relies on heuristics to generate derived terms

and to define natural landmarks for the qualitative state repre-

sentation. Scaling to larger physical domains will likely require

the application of more heuristics for generating derived

variables [6]. In addition, the division of qualitative variables

into [−], [0], [+] may not include the most useful underlying

qualitative distinctions in other domains. Even if these simple

qualitative distinctions are sufficient for representing good

policies, they may not be sufficient for learning them [20].

We expect that methods of landmark identification [21], which

have shown utility in planning over qualitative states [22],

would allow this approach to extend to domains with non-

zero qualitative landmarks.

The discovery of derived terms through data-driven explo-

ration of the relationships between continuous state variables

can potentially lead to a large number of state representations.

We presented two methods above of evaluating the effective

contribution of individual qualitative state variables (or subsets

of variables). Pruning the state representation using these

methods leads to better policies (Figure 5).

We expect that the heuristics we present for generating

derived variables, and the qualitative distinctions we impose

on those variables, would apply equally well to other scenarios

involving high dimensional inputs, Newtonian physics and

Fig. 7. Almost all successful policies employed to some extent the simple
skill of tracking the y position of the puck with the paddles. Such policies
attempt to minimize ypaddle − ypuck . We note in the above diagram that
a naive tiling of (ypaddle, ypuck) space, unlike the derived qualitative state
representation, would result in many more states than are required to represent
this policy. We expect that methods which subdivide the ranges of existing
variables in order to bridge the gap between surface variables and state features
(e.g. tile coding) would require more experience to learn proper policies than
the approach presented here.

complete observability. More complex domains may require

improved heuristics for generating derived terms. The BACON

system, which served as inspiration for our discovery method,

was able to derive many complex physical laws (e.g. the ideal

gas law [23]) from observations of surface variables.

In addition to a wider array of derived variables, we also

expect that more complex domains would require more sophis-

ticated methods of dividing the ranges of derived variables

(e.g. parti-game [24], U-Trees [20], G Algorithm [25]). As

we illustrate in Figure 7, such methods are not necessarily

sufficient for generating efficient state representations, as they

do not generate new state variables.

We also intend to explore extended coupling of represen-

tation refinement with the discovery of new derived terms,

leading to the notion of representation iteration. The work

above can be seen as one iteration of representation iteration,

where we first generate a set of hypothesis state variables, then

refine that set by attempting to train policies using TD learning

over that set. An agent may repeat these two steps when, for

example, new objects enter into the agent’s perceptual field.

In much of the theoretical work on algorithms for rein-

forcement learning, the state representation is assumed to be

fixed and given. In applications, however, the proper choice

of state representation (and function approximation method)

is a critical component of successful solutions to many re-

inforcement learning problems. Designers face a wide array

of choices for both state and value function representations,

choices that a bootstrapping agent must make autonomously.

Though different domains may require the inclusion of differ-

ent perceptual functions, clustering, and tracking algorithms,

the work presented here provides a principled, automated

method of going from pixel level observations to policies.

ACKNOWLEDGMENTS

This work has taken place in the Intelligent Robotics Lab

at the Artificial Intelligence Laboratory, The University of

Texas at Austin. Research of the Intelligent Robotics lab is

supported in part by grants from the Texas Advanced Re-

search Program (3658-0170-2007), from the National Science

Foundation (IIS-0413257, IIS-0713150, and IIS-0750011), and

from the National Institutes of Health (EY016089).

REFERENCES

[1] D. Pierce and B. Kuipers, “Map learning with uninterpreted sensors and
effectors,” Artificial Intelligence, vol. 92, no. 1-2, pp. 169–227, 1997.

[2] L. Olsson, C. Nehaniv, and D. Polani, “From unknown sensors and
actuators to actions grounded in sensorimotor perceptions,” Connection

Science, vol. 18, no. 2, pp. 121–144, 2006.
[3] Z. Pylyshyn, “The Role of Location Indexes in Spatial Perception:A

Sketch of the FINST Spatial Index Model,” Cognition, vol. 32, pp. 65–
97, 1989.

[4] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring
problem,” Robotics and Autonomous Systems, vol. 43, no. 2-3, pp. 85–
96, 2003.

[5] J. Modayil and B. Kuipers, “Autonomous development of a grounded
object ontology by a learning robot,” in Proceedings of the Twenty-

Second National Conference on Artificial Intelligence (AAAI-07), 2007.
[6] P. Langley, H. Simon, G. Bradshaw, and J. Zytkow, Scientific Discovery:

Computational Explorations of the Creative Processes. MIT Press,
1987.

[7] B. Kuipers, Qualitative Reasoning: Modeling and Simulation with

Incomplete Knowledge. MIT Press, 1994.
[8] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM

Computing Surveys (CSUR), vol. 38, no. 4, 2006.
[9] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT

Press, 1998.
[10] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement Learning: A

Survey,” Journal of Artificial IntelligenceResearch, vol. 4, pp. 237–285,
1996.

[11] W. Snyder and H. Qi, Machine Vision. Cambridge University Press,
2004.

[12] F. Linaker and L. Niklasson, “Sensory Flow Segmentation using a Re-
source Allocating Vector Quantizer,” Advances in Pattern Recognition:

Joint IAPR International Workshops SSPR2000 and SPR2000, pp. 853–
862, 2000.

[13] B. Fritzke, “A growing neural gas network learns topologies,” Advances

in Neural Information Processing Systems, vol. 7, pp. 625–632, 1995.
[14] J. Platt, “A resource-allocating network for function interpolation,”

Neural Computation, vol. 3, no. 2, pp. 213–225, 1991.
[15] L. Li, T. Walsh, and M. Littman, “Towards a unified theory of state ab-

straction for MDPs,” Proceedings of the ninth international symposium

on AI and mathematics, 2006.
[16] J. Albus et al., “A new approach to manipulator control: The cerebellar

model articulation controller (CMAC),” Journal of Dynamic Systems,

Measurement and Control, vol. 97, no. 3, pp. 220–227, 1975.
[17] R. S. Sutton, “Generalization in reinforcement learning: Successful

examples using sparse coarse coding,” Advances in Neural Information

Processing Systems, vol. 8, pp. 1038–1044, 1996.
[18] D. Michie and R. A. Chambers, “BOXES: An Experiment in Adaptive

Control,” in Machine Intelligence 2. Edinburgh University Press, 1968,
pp. 137–152.

[19] A. Barto, R. Sutton, and C. Anderson, “Neuronlike adaptive elements
that can solve difficult learning control problems,” IEEE Computer

Society Neural Networks Technology Series, pp. 81–93, 1990.
[20] A. McCallum, “Reinforcement Learning with Selective Perception and

Hidden State,” Ph.D. dissertation, University of Rochester, 1996.
[21] U. Fayyad and K. Irani, “Multi-interval discretization of continuous-

valued attributes for classification learning,” Proceedings of the Thir-

teenth International Joint Conference on Artificial Intelligence, vol. 2,
1993.

[22] J. Mugan and B. Kuipers, “Learning distinctions and rules in a contin-
uous world through active exploration,” in 7th International Conference

on Epigenetic Robotics (Epirob-07), 2007.
[23] P. Langley, G. Bradshaw, and H. Simon, “Rediscovering chemistry with

the BACON system,” Machine Learning: A Multistrategy Approach,
1994.

[24] A. Moore and C. Atkeson, “The parti-game algorithm for variable
resolution reinforcement learning in multidimensional state-spaces,”
Machine Learning, vol. 21, no. 3, pp. 199–233, 1995.

[25] D. Chapman and L. Kaelbling, “Input generalization in delayed re-
inforcement learning: An algorithm and performance comparisons,”
Proceedings of the Twelfth International Joint Conference on Artificial

Intelligence, pp. 726–731, 1991.

