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Abstract—Past research has investigated children’s knowledge 

of arithmetic principles over development. However, little is 
known about the mechanisms involved in acquiring principle 
knowledge. We hypothesize that experience with equations that 
violate a to-be-learned principle will lead to changes in equation 
encoding, which in turn will promote acquisition of principle 
knowledge. Adults’ knowledge of an arithmetic principle was 
evaluated before and after a training session in which some 
participants were exposed to equations that violated the 
principle. Participants who were exposed to temporally proximal 
principle violations increased their knowledge more than 
participants who were exposed to widely spaced violations. 
Learners with low principle knowledge post-training were also 
poor at encoding key features of the equations. Thus, variations 
in experience lead to variations in principle learning, and 
encoding is an important component of principle knowledge. 
 

Index Terms—Cognitive Development, Implicit learning 

I. INTRODUCTION 
Principles can be defined as regularities or general rules 

within a domain. For example, one principle that applies to the 
domain of mixture problems is that the concentration of the 
final solution must be in between the concentrations of the 
two initial solutions. Learners have been shown to use 
principles in a variety of domains, including counting [1], 
proportional reasoning [2], artificial grammar learning [3, 4], 
and language acquisition [5-7]. Studies from the domain of 
language acquisition [6, 7] provide a representative example 
of research on principle learning. In these studies, infant 
participants were exposed to linguistic input (sometimes for as 
little as 2 minutes) that contained regularities. Participants 
were then tested with stimuli that either corresponded to or 
violated those regularities. Looking-time evidence indicates 
that infants are capable of learning linguistic regularities in 
this manner (however, for alternative views see [8] and [9]). 
These linguistic regularities can be thought of as principles of 
language. 

The focus of the present study is arithmetic principles, 
specifically the Relationship to Operands principle. Generally 
stated, this principle describes the relationships between the 
operands and the result in an arithmetic equation. The exact 
relationship varies depending on the operation. In simple 
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addition equations (A + B = C), the sum (C) must be greater 
than the two addends (A and B). In simple subtraction 
equations (A - B = C), the difference (C) must be less than the 
subtrahend (A), however it may have any relationship with the 
minuend (B). In simple multiplication equations (A x B = C), 
the product (C) must be greater than both operands (A and B). 
In simple division equations (A ÷ B = C), the quotient (C) 
must be smaller than the dividend (A), however it may have 
any relationship with the divisor (B). These are all considered 
examples of the Relationship to Operands principle, though 
the details for each operation differ slightly. 

A large amount of literature is devoted to learners’ 
knowledge of arithmetic principles. Most of this literature 
focuses on characterizing learners’ knowledge at particular 
points of development. This includes infants [10], preschool 
age children [11], older children [12], and adults [13]. This 
sort of inventory of knowledge and its development is 
certainly necessary and useful. However it leaves unanswered 
the question of how principle knowledge is acquired. This is 
not to say that no study to date has in part addressed the 
mechanisms of principle acquisition; however this issue has 
not been the focus of the vast majority of the literature. 

A. Principle learning in artificial grammars 
A large amount of research has investigated the learning of 

regularities in artificial grammars. This research often 
investigates the implicit learning of these regularities. In a 
typical artificial grammar learning study, participants view a 
large amount of input that corresponds to a particular artificial 
grammar [4], [14]-[17]. These grammars involve strings of 
letters of varying length, such as ABFE or ABBQW, that 
correspond to some predetermined finite state grammar. 
Participants may be instructed to memorize the examples or 
otherwise pay attention to them, and they are not told that 
there are any regularities in the stimuli to learn. After the 
initial exposure, participants are told that a regularity was 
present, and their knowledge of the regularity is assessed via 
their evaluation of novel examples that either violate or are 
consistent with the regularity. The general consensus is that 
participants are often able to learn what seem like complex 
regularities. Most relevant to the current research is the idea 
that participants are able to learn regularities in a domain 
through exposure to examples that are structured in specific 
ways. In artificial grammar studies, principle learning is 
usually accomplished via experience with principle-consistent 
examples as opposed to examples that violate the principle. 
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B. Arithmetic principle learning 
Though research in other domains is certainly suggestive 

regarding mechanisms of acquisition of arithmetic principles, 
research specifically on arithmetic would be more informative. 
Few studies specifically address changes in arithmetic 
principle knowledge.  

In one of the few studies to address principle acquisition 
[18], Dixon and Bangert had participants engage in a task for 
which knowledge of an arithmetic principle was required for 
success. They found that increased principle knowledge was 
predicted by successive correct trials on the task, and not by 
total number of correct trials. That is, learners who were 
successful in a temporally proximal way were more likely to 
learn the principle than learners whose success was spread 
out. It should be noted that Dixon and Bangert used a “natural 
learning” paradigm in which there were no manipulations 
intended to influence learning. Their results suggest that it 
would be valuable to investigate the acquisition of arithmetic 
principles under more controlled conditions. 

Dixon and Bangert theorized that the mechanism by which 
learners gain arithmetic principle knowledge involves changes 
in learners’ internal representations [18]. Internal 
representational change as a mechanism for learning is 
consistent with some theories of cognitive development such 
as Representational Redescription [19]. Prior research in a 
different domain (gear problems) also suggests that changes in 
learners’ internal representations lead to changes in behavior 
[20]. Dixon and Bangert argue that in order to change 
representation, the learner needs to have the relevant 
regularity highlighted repeatedly within a short time span. 
Once a particular regularity is highlighted enough, the learner 
will integrate that regularity into his or her representation of 
the domain. Thus, repeated temporally proximal experiences 
that highlight a specific arithmetic principle should lead to the 
acquisition of that principle by the learner. Dixon and Bangert 
interpreted this to mean that arithmetic principle acquisition 
would be predicted by temporally proximal principle-
consistent experiences, and their findings supported this 
hypothesis. This view has also been supported to some extent 
by prior work on temporal proximity and arithmetic learning 
[21]. 

The current study expands on Dixon and Bangert’s initial 
investigation of arithmetic principle acquisition, drawing on 
what is known about learning of regularities in other domains. 
The general goals of the current research are twofold: first, to 
articulate a theory of arithmetic principle acquisition, and 
second, based on that theory, to investigate which aspects of 
input facilitate learning of arithmetic principles. 

C. Encoding as a learning mechanism 
Previous research has attributed changes in learners’ 

knowledge to changes in their encoding or representation of 
the problem domain [19], [22]. What exactly is meant by 
encoding or representation? For a given stimulus, whether it 
be a simple arithmetic equation, a chess board scene, or a 
physics problem, there are many features that can be encoded. 

Consider the example of a simple equation, 8 + 3 = 11. There 
are many features of the equation that could be noted: the 
color of the numerals, the order of the numbers, the type of 
operation, the value of the operands, and the relative 
magnitude of the operands and the sum. An experienced 
arithmetic learner should be able to encode these 
characteristics from the external stimulus. The learner uses 
these encoded characteristics to form an internal 
representation of the equation. A learner’s representation of a 
particular problem may draw, not only on information 
encoded from the given problem, but also on other sources of 
knowledge from long-term memory, such as prior knowledge 
of common problem schemas.  

Problem encoding and representation vary as a function of 
domain knowledge or expertise. Studies comparing novices 
and experts in several domains (e.g., chess, physics) have 
shown that experts more accurately encode relevant displays. 
For example, Chase and Simon found that expert chess 
players reconstructed complex chess positions better than 
novices [23]. Experts did not generally have better memory, 
but they encoded and represented the positions differently 
from the novices.  

In the domain of arithmetic, research has linked deficits in 
encoding with difficulties in solving certain types of 
problems. For example, many children have difficulty solving 
equations in the form A + B + C = A + __. McNeil and 
Alibali hypothesized that learners have trouble accurately 
encoding equations in this unfamiliar format [22]. Indeed, 
they found that learners who had difficulty solving these types 
of equations also showed poor encoding of the equations. 

The current research addresses encoding and representation 
as they relate to arithmetic principle knowledge. More 
specifically, the present study investigates the influence of 
several factors in changing learners’ encoding of arithmetic 
equations. Problem encoding is somewhat fluid and may 
change over the course of development [19], in the short term 
given the right experience [22], or with the development of 
expertise in a domain [23]. We hypothesize that these changes 
in encoding are the mechanism that leads to increased 
arithmetic principle knowledge.  

Consider learners’ encoding of simple arithmetic equations. 
The learner’s encoding of the equations involves noting and 
prioritizing a set of features. The learner may note features 
such as the value of the operands, the operation, the order of 
the operands, specific characteristics of the operands such as 
evenness or oddness, and so forth. Some characteristics may 
be deemed very important while others are virtually ignored. 
In the case of the Relationship to Operands principle, the 
characteristic that is crucial to encode is the relative 
magnitude of the operands and the result. Learners whose 
encoding prioritizes the relative magnitude of the operands 
and the result should demonstrate knowledge of the 
Relationship to Operands principle. Learners whose encoding 
does not prioritize the relative magnitudes of the operands and 
the result should not show knowledge of Relationship to 
Operands.  
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In this research, we consider two characteristics of the 
learners’ input that may affect encoding and principle 
learning: the number of principle violations and the temporal 
proximity of those violations.  

II. RESEARCH QUESTIONS 

A. Does the presence of principle violations affect 
learning? 
Learning of regularities in most domains involves learning 

by positive examples only [3, 24]. That is, participants who 
learn regularities in these studies see only principle-consistent 
examples. Thus, to the learner, there is no direct information 
regarding what is inconsistent with the regularity being 
learned. Given that there is relatively little research on the 
process of arithmetic principle acquisition, there is very little 
work on how principle violations and principle-consistent 
experiences may contribute to arithmetic principle learning.  

The current study investigates learning from a mixture of 
violations and principle-consistent evidence. The idea is that a 
mix of positive and negative evidence will highlight the 
relevant regularities for the learner. Contrasting stimuli that 
are consistent with a particular principle with stimuli that are 
inconsistent with the principle may help the learner encode the 
relevant regularity. 

B. Does the temporal proximity of the relevant input affect 
learning? 
Previous investigations [18] have suggested that temporal 

proximity of relevant input facilitates learning of arithmetic 
principles. Examples that highlight a particular regularity may 
be more effective when presented to the learner in a blocked 
sequence. For example, a learner who receives three examples 
that highlight Relationship to Operands in a row may be better 
off than a learner who sees those same three examples 
interleaved between less informative input.  

Two previous studies [21, 25] have investigated knowledge 
change though “blocked” vs. “mixed” practice with the 
arithmetic principles. In these studies, participants solved sets 
of three-term arithmetic problems in which the Inversion 
principle was either relevant (a + b – b) or irrelevant (a + b – 
c). Participants in the blocked learning group solved only 
relevant equations, while participants in the mixed group 
solved relevant and irrelevant equations.  

Both studies concluded that participants who received 
blocked practice learned the principle better than participants 
who receive mixed practice. Although this may seem to 
support proximity of relevant input as important to learning, it 
is unclear whether the total amount of relevant input may also 
have been a factor. In both cases, blocked practice included 
twice the amount of relevant input as mixed practice. 

One goal of the current study is to examine whether 
temporal proximity affects principle learning. Principle 
learning may be facilitated by input that highlights the 
regularity repeatedly within a small amount of time. Thus the 
temporal proximity of the relevant input may facilitate 

learning.   

C. Does equation encoding relate to principle knowledge? 
We hypothesize that learners’ encoding of arithmetic 

equations will relate to their knowledge of arithmetic 
principles. Specifically, in the case of the Relationship to 
Operands principle, encoding of the relative magnitudes of 
the operands and the result will relate to knowledge of the 
principle. The idea is that noting relative magnitudes as an 
important feature is required for understanding the 
Relationship to Operands principle. We hypothesize that 
learners who encode this feature of equations are more likely 
to have knowledge of the principle than learners who do not. 

III. METHOD 

A. Participants 
Adult participants (N = 119) were recruited through a 

university course extra credit pool. 

B. Procedure 
The focus of the study was on participants’ acquisition of 

the Relationship to Operands principle for division. 
Participants took part individually in one experimental session 
that included six tasks, described below.  

1) Evaluation task – pre-training 
The evaluation task was based on that used by Dixon et al. 

(2001) to assess knowledge of principles. Participants viewed 
sets of solved division equations, presented one at a time on 
sheets of paper. Each set consisted of nine equations presented 
in a 3 × 3 matrix. Participants were told that each set had been 
solved by “a hypothetical student who is learning arithmetic”. 
Participants were also told that all of the equations were 
incorrect, but that they might believe that some students made 
better attempts at arithmetic than others. Participants were 
asked to rate each attempt on a scale from 1 to 7, with 1 
indicating very bad and 7 indicating pretty good. This task 
was not timed. 

2) Training task 
The training task involved serial presentation of stimuli on 

a computer screen similar to that used in artificial grammar 
learning studies [3]. Participants were instructed that they 
were to view a display of equations solved by two 
hypothetical students and to decide which student understood 
arithmetic better.  

Stimuli included a mix of correct, incorrect non-violation 
and incorrect violation equations (all division). Equations 
were marked by color as correct (green) or incorrect (red). 
The proportion and placement of the violation equations 
depended on the condition to which the participant was 
assigned. There were two factors manipulated in a 2 x 2 
factorial design: number of violation equations (high, low) 
and temporal proximity of violations (blocked, interleaved). 
Thus the four conditions were as follows: high-blocked, high-
interleaved, low-blocked, and low-interleaved. 

In addition to these conditions, there was also group of 
participants who viewed no violations at all. In this condition, 
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all of the equations in the training stimuli were consistent with 
the arithmetic principle. 

3) Evaluation task – post-training 
Following the training, the evaluation task was presented 

again using a different set of stimuli. 
4) Verification task 

Participants viewed solved arithmetic equations one at a 
time on a computer monitor, and were asked to judge whether 
each equation was correct (e.g., “54 ÷ 6 = 9”) or incorrect 
(e.g., “15 ÷ 5 = 2”). Presentation time was brief (1300 
milliseconds) to make the task more challenging. Participants 
were asked to respond as quickly and accurately as they could, 
and both speed and accuracy were recorded. Incorrect trials 
included both principle violations and non-violations, because 
we intended to use the data to generate an additional measure 
of participants’ knowledge of principles. However, there were 
no systematic differences in speed or accuracy on violation 
and non-violation trials and no systematic relations with 
performance on the other tasks. Therefore, data from this task 
will not be considered further. 

5) Encoding task 
Participants viewed equations presented briefly (650 ms) on 

a computer screen. After each equation the participant saw a 
series of four letters. The participant was then asked to answer 
a question about the letters (e.g., Was the first letter a z?) and 
then to answer a question about the equation. Questions about 
the equation were of four types: (a) identity (e.g., Was the first 
number 27?), (b) relationship (e.g., Was the first number 
bigger than the third?), (c) operation (e.g., Was the operation 
division?) or (d) parity (e.g., Was the third number odd?). The 
question types were mixed throughout the trials, thus, for any 
given trial the participant did not know what type of question 
they would be asked. 

6) Word problem task 
Participants were presented with ten multiple choice word 

problems, including 5 problems that involved division and 5 
that involved multiplication. Each problem conveyed a story 
scenario such as “Mike bakes 56 cookies on 7 trays of the 
same size. How many cookies were on each tray?” For each 
problem, participants selected from a set of five equations the 
one that could be used to solve the story problem.  

IV. RESULTS 

A. Do participants show knowledge of the principle before 
training? 
Participants’ knowledge of the principle was inferred based 

on their performance on the evaluation task; they were 
inferred to have knowledge if they judged students who 
violated the principle more harshly than students who did not 
violate the principle.  

To examine whether participants showed knowledge of the 
principle before training, we compared their average ratings of 
violation sets and non-violation sets on the pre-training 
evaluation task. Overall, participants rated violation sets lower 
than non-violation sets (1.99 vs. 2.32), t(119) = 6.50, p < .01. 

Thus, participants had some knowledge of the principle before 
training; however, the mean difference was quite small, and 
participants therefore had room to improve. 
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Figure 1. Learning scores for participants in each of the training conditions.  

B. Does participants’ principle knowledge change with 
training? If so, what factors is learning dependent on? 
For each participant a “learning” score was calculated. This 

was done by comparing the difference in ratings of non-
violation and violation sets in the evaluation task pre and post 
training. For example, if a participant rated non-violations 
higher than violations by 0.05 on the pre-training evaluation 
task and by 0.70 on the post-training evaluation task, that 
participant’s learning score would be 0.65. The data analysis 
compares learning scores across conditions.  

Recall that participants viewed input that varied along two 
factors, number of violations (high vs. low), and proximity 
(blocked, interleaved). We conducted a 2 (number of 
violations: high or low) x 2 (proximity: blocked or 
interleaved) ANOVA with learning scores as the dependent 
measure. The data are presented in Figure 1. A significant 
effect of proximity was found, F(1, 83) = 4.21, p = .04. 
Participants in the blocked conditions had higher learning 
scores (M = .269) than participants in the interleaved 
conditions (M = -0.052). Number of violation equations did 
not significantly affect improvement scores, F(1, 83) = .919, p 
= .34. Participants in the high-amount conditions did not have 
significantly different learning scores from participants in the 
low-amount conditions (Ms = 0.032 and 0.186, respectively). 
The interaction of the two factors was not significant, F(1, 83) 
= 1.04, p = .31. In sum, improvement on the evaluation task 
was dependent on proximity of the violations, not the amount 
of violations.  

To examine whether principle violations facilitated learning 
more than principle-consistent examples, we performed a 
planned comparison between the blocked group and the 
principle consistent group. This comparison was marginally 
significant, t(73) = 1.89, p = .061.  

We also examined whether number of violations affected 
learning within the blocked conditions. The difference in 
learning scores between the high-blocked and low-blocked 
conditions was not significant, t(41) = 1.26, p = 0.21. 
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C. Is there a relationship between principle knowledge and 
equation encoding? 
We hypothesized that there would be a relationship between 

learners’ principle knowledge and their encoding of the 
relative magnitudes of the numbers in the equations. The most 
relevant comparison is between learners’ post-training 
principle knowledge and their encoding scores. We calculated 
encoding scores for each of the four types of questions in the 
encoding task: relationship, identity, parity and operation. 
Based on participants’ post-training principle knowledge 
scores, participants were divided into three equal size groups, 
with high, medium and low principle knowledge. For these 
groups, scores on the post-training evaluation task were 1.14, 
0.32, and -0.29, respectively. For each of the four question 
types, we ran a one-way ANOVA and conducted post hoc 
comparisons.  

For both relationship and identity encoding scores, the 
ANOVA was significant, F(1, 116) = 3.66, p = .03 and F(1, 
116) = 5.94, p = .003, respectively. For both relationship and 
identity encoding scores, participants in the low principle 
knowledge group performed significantly more poorly than 
participants in the medium or high knowledge groups (see 
Figure 2). For relationship encoding scores the low 
knowledge group (M = 0.71) scored significantly lower than 
the medium group (M = 0.81, p = .023), though not 
significantly lower than the high group (M = 0.78, p = .21). 
For identity encoding scores, the low knowledge group (M = 
0.63) scored significantly lower than the medium group (M = 
0.73 p = .05) and the high group (M = 0.78, p = .003). It is 
worth noting that if the identity of the numbers is accurately 
encoded, the relative magnitude of the operands and the result 
can be inferred. 

Neither parity nor operation encoding scores yielded 
significant results, F(1, 116) = 0.384, p = .68 and F(1, 116) = 
0.087, p = .91. Thus, there were no significant differences 
between the principle knowledge groups in encoding the 
parity of the numbers or the operations used in the equations. 
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Figure 2. Relationship and Identity encoding scores for participants with high, 
medium and low principle knowledge post-training. 

 
 Note that the parity of the numbers is not relevant to the 

Relationship to Operands principle. Further, regardless of 
which operation is involved, the relative magnitudes of the 

operands and result are crucial to encode; thus, variations in 
encoding operation as a function of principle knowledge were 
also not expected.  

These results suggest that learners with greater arithmetic 
principle knowledge encode specifically the relative 
magnitudes and the identities of the numbers in arithmetic 
equations better than learners with less principle knowledge.  

D. Are there consequences to having principle knowledge? 
Because the training was in division only, we looked at 

participants’ performance on the division items on the word 
problem task. We conducted a 2 (number of violations) x 2 
(proximity) ANOVA with division sub-scores as the 
dependent measure. Neither factor was significant, proximity 
F(1, 83) = 2.39, p = .12, number of violations F(1,83) = .37, p 
= .54. Participants in the blocked conditions were correct on 
78% of the division items while participants in the interleaved 
condition were correct on 71% of the items. 
 

V. CONCLUSION 
We have shown that learners’ arithmetic principle 

knowledge is affected by their experience. Specifically, 
increases in arithmetic principle knowledge are related to 
temporally proximal principle violations. Simple exposure to 
such violations led to gains in knowledge. This result is not 
what would be expected based on much of the implicit 
learning literature, which generally focuses on learning via 
principle-consistent examples only.  

The current experiment extends prior research [18] by 
utilizing an experimental manipulation of exposure to 
equations, as opposed to a correlational approach. In addition, 
this work examines the relation between principle knowledge 
and equation encoding.  

We found that training that included violations led to 
superior learning; however, it is unclear whether violations in 
and of themselves are beneficial. The training stimuli included 
a mix of violations, incorrect non-violations, and correct 
equations. Thus, learners always viewed violation equations in 
the context of principle-consistent equations. This allows for 
comparison between violations and non-violations, and it may 
be this comparison, rather than the presence of violations per 
se, that facilitates learning of the principle. Further, this 
comparison may be easier for learners when violations are 
presented in blocks. Learners must generalize to some degree 
across specific examples to note the regularities present, and it 
may be easier to generalize when the relevant examples are 
closely spaced. It should be noted that the equations in the 
training stimuli were marked as correct and incorrect, not as 
violations and non-violations. Thus, from the present data, it is 
not possible to determine whether comparing violations to 
incorrect non-violations or to correct equations is more 
effective. 

We initially hypothesized that accurate equation encoding 
of specific problem features underlies arithmetic principle 
knowledge. The results suggest that learners with relatively 
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low principle knowledge were also poor at encoding the 
relative magnitudes of the numbers in the equations and the 
identity of the numbers in the equations. However, the range 
of encoding scores was not great, making group differences 
difficult to discern. In future studies, it would be desirable to 
use a more challenging encoding task.  

Although accurate equation encoding may be required for 
knowledge of the principle, it does not seem to be the case 
that accurate encoding automatically leads to principle 
knowledge. This is suggested by the fact that high principle 
knowledge participants did not encode the problems 
significantly more accurately than the medium principle 
knowledge group. It may be that accurate encoding is 
necessary, but not sufficient, for principle knowledge. 

The results of this experiment suggest that accurate 
encoding of relevant problem features is a key aspect of 
learning the Relationship to Operands principle. However, 
future studies will be needed to test this claim directly. The 
general idea that changes in encoding lead to changes in 
knowledge may generalize to other arithmetic principles and 
to principles in other domains. However, the specifics of what 
information needs to be encoded and of how to facilitate 
changes in encoding will certainly vary. 

Further research is progressing along several lines. We are 
pursuing additional behavioral and computational modeling 
work that aims to more fully characterize the relationship 
between equation encoding and principle knowledge. Finally, 
we are also conducting studies using a similar paradigm with 
children in classroom settings, to explore whether educational 
interventions that involve implicit learning might facilitate 
principle learning in classroom settings.  
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