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Abstract— An important goal in studying both human 
intelligence and artificial intelligence is an understanding of how 
a natural or artificial learning system deals with the uncertainty 
and ambiguity in the real world. We suggest that the relevant 
aspects in a learning environment for the learner are only those 
that make contact with the learner’s sensory system. Moreover, 
in a real-world interaction, what the learner perceives in his 
sensory system critically depends on both his own and his social 
partner’s actions, and his interactions with the world. In this 
way, the perception-action loops both within a learner and 
between the learner and his social partners may provide an 
embodied solution that significantly simplifies the social and 
physical learning environment, and filters irrelevant information 
for a current learning task which ultimately leads to successful 
learning. In light of this, we report new findings using a novel 
method that seeks to describe the visual learning environment 
from a young child’s point of view. The method consists of a 
multi-camera sensing environment consisting of two head-
mounted mini cameras that are placed on both the child’s and 
the parent’s foreheads respectively. The main results are that (1) 
the adult’s and child’s views are fundamentally different when 
they interact in the same environment; (2) what the child 
perceives most often depends on his own actions and his social 
partner’s actions; (3) The actions generated by both social 
partners provide more constrained and clean input to facilitate 
learning. These findings have broad implications for how one 
studies and thinks about human and artificial learning systems. 
 

Index Terms— cognitive science, embodied cognition, artificial 
intelligence.  

I. INTRODUCTION 
The world’s most powerful computers and robots using the 
most sophisticated software are still far worse than human 
babies in learning from real world events. Why is this so? One 
vexing problem for computer scientists is that the real world 
visual environment is ‘cluttered’ with lots of overlapping and 
moving objects, and a computer system simply cannot handle 
all the information simultaneously available to it. For 
example, current computer vision systems may be able to 
learn and recognize several hundreds of 2D objects in 
supervised mode and in a clean condition ( pre-segmented and 
normalized images) while even 5-year old children can easily 
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recognize thousands of everyday objects in unsupervised 
mode. Likewise, children seem to learn their native 
vocabulary with little effort. Meanwhile, there is no existing 
computational system that can learn and use natural languages 
in a human-like way (Weng, McClelland, Pentland, Sporns, 
Stockman, Sur, and Thelen, 2001; Yu, Ballard, and Aslin, 
2005; Deak, Barlett, and Jebara, 2007).  
What are differences between human learning and machine 
learning? To deal with noisy data in the real world, most state-
of-the-art AI approaches first collect data with (or without) 
teaching labels from users and the environment, and then rely 
on implementing advanced mathematical algorithms. These 
algorithms are then applied to the pre-collected data to induce 
knowledge. This methodology largely assumes that a learner 
(e.g. a machine) passively receives information from a teacher 
(e.g. a human supervisor) in a one-way flow. In contrast, a 
young child is situated in social contexts and learns about 
language and about the world through his own actions with the 
world and with the caregiver. More specifically, the learner 
actively generates actions to interact with the physical 
environment, to shape the caregiver’s responses, and to 
acquire just-in-need data for learning. At the same time, the 
caregiver also dynamically adjusts her behaviours based on 
her understanding of the learner’s state. Thus, the caregiver 
may provide “on-demand” information for the learner in real 
time learning. The coupled behaviours between the young 
learner and the caregiver not only serve as social cues to 
motivate the learner to be engaged in learning, but also direct 
the learner’s attention to certain aspects in the physical 
learning environment which will be used as the input to 
internal cognitive processes (Ballard, Hayhoe, Pook, & Rao, 
1997, Triesch, Teuscher, Deak, and Carlson, 2006).  
However, most artificial intelligence studies focus on one 
aspect of learning – what kind of learning device can perform 
effective computations on pre-collected data, but ignore an 
equally important aspect of the learning — how a leaner may 
selectively attend to certain aspects in the learning 
environment by using his bodily actions to influence his 
sensory system (the input to the learning device) and also how 
the caregiver may use her own actions to influence the 
learner’s perception. We suggest here that the relevant aspects 
in a learning environment for the learner are only those that 
make contact with the learner’s sensory system. In light of 
this, we report new findings using a novel method that seeks 
to describe the visual learning environment from a young 
child’s point of view and as well as to measure how the 
learner’s actions and the caregiver’s actions may influence the 
learner’s visual information. 
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II. MULTI-CAMERA SENSING ENVIRONMENT 
The method used a multi-camera sensing system in a 
laboratory environment wherein children and parents were 
asked to freely interact with each other. As shown in Figure 1, 
participants’ interactions are recorded by three cameras from 
different perspectives – one head-mounted camera from the 
child’s point of view to obtain an approximation of the child’s 
visual field, one from the parent’s viewpoint to obtain an 
approximation of the parent’s visual field, and one from a top-
down third-person viewpoint that allows a clear observation of 
exactly what was on the table at any given moment (mostly 
the participants’ hands and the objects being played with).  

A. Interaction Environment 
 The study was run in a 3.3m × 3.1m room. At the center of 
the room a 61cm × 91cm × 64cm table was placed. The table 
surface was covered in a white soft blanket. A high chair for 
the child and a small chair for the parent was placed facing 
each other. The walls and floor of the room were covered with 
white fabrics. Both participants were asked to wear white T-
shirts as well. In this way, from any image collected from any 
camera, white pixels can treated as background while non-
white pixels are either objects on the table, or the hands, or the 
faces of participants.  

B. Head-Mounted Cameras  
Two light-weight head-mounted mini cameras (one for the 
child and another for the parent) were used to record the first-
person view from both the child and the parent’s perspectives. 
These cameras were mounted on two everyday sports 
headbands, each of which was placed on one participant’s 
forehead and close to his eyes. The angle of the camera was 
adjustable. Input power and video output to these cameras 
went through a camera cable connected to a wall socket, 
which was long enough to not cause any movement restriction 
while participants were sitting down. Both cameras were 
connected to a multi-channel digital video capture card in a 
recording computer in the room adjacent to the experiment 
room.  
  The head camera field is approximately 70 degrees, which is 
comparable to the visual field of older infants, toddlers and 
adults. One possible concern in the use of a head camera is 

that the head camera image changes with changes in head 
movements but not in eye movements. This problem is 
reduced by the geometry of table-top play. Yoshida & Smith 
(2007) documented this in a head-camera study of toddlers by 
independently recording eye-gaze. This study showed that 
small shifts in eye-gaze direction unaccompanied by a head 
shift do not yield distinct table-top views. Indeed, in their 
study 90% of head camera video frames corresponded with 
independently coded eye positions. Figure 2 (left) shows two 
snapshots from the two head cameras at the same moment in 
time.  

C. Bird-Eye View Camera  
A high-resolution camera was mounted right above the table 
and the table edges aligned with edges of the bird-eye image. 
As shown in Figure 2 (right), this view provided visual 
information that was independent of gaze and head 
movements of a participant and therefore it recorded the whole 
interaction from a third-person static view. An additional 
benefit of this camera lied in the high-quality video, which 
made our following image segmentation and object tracking 
software work more robustly compared with two head-
mounted mini cameras. Those two were light-weighted but 
with a limited resolution and video quality due to their small 
size.  

III. PARENT-CHILD JOINT INTERACTION EXPERIMENT  
 

Participants. The target age period for this study was 18 to 20 
months. We invited parents in the Bloomington, Indiana area 
to participate in the experiment. Nine dyads of parent and 
child were part of the study. One child was not included 
because of fussiness before the experiment started. For the 
child participants included, the mean age was 18.2, ranging 
from 17.2 to 19.5 months. Three of the included children were 
female and five were male. All participants were white and 
middle-class. 
Stimuli. Parents were given six sets (three toys for each set) in 
a free-play task. The toys were either rigid plastic objects or 
plush toys (three of the total 18). Most of them had simple 
shapes and either a single color or an overall main color. Some 
combinations of objects were selected to elicit an action, 
especially evident to an adult asked to play with them. 
Procedure. The study was conducted by three experimenters: 
one to distract the child, another to place the head-mounted 
cameras and a third one to control the quality of video 
recording. Parents were told that the goal of the study was 
simply to observe how they interacted with their child while 
playing with toys and that they should try to interact as 
naturally as possible. Upon entering the experiment room, the 
child was quickly seated in the high chair and several 
attractive toys were placed on top of the table. One 
experimenter played with the child while the second 
experimenter placed a sports headband with the mini-camera 
onto the forehead of the child at a moment that he appeared to 
be well distracted. Our success rate in placing sensors on 
children is now at over 80%. After this, the second 
experimenter placed the second head-mounted camera onto 
the parent’s forehead and close to her eyes.  

Figure 1: Multi-camera sensing system. The child and the mother play with a 
set of toys at a table. Two mini cameras are placed onto the child’s and the 
mother’s heads respectively to collect visual information from two first-person 
views. A third camera mounted on the top of the table records the bird-eye 
view of the whole interaction.  
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   To calibrate the horizontal camera position in the forehead 
and the angle of the camera relative to the head, the 
experimenter asked the parent to look into one of the objects 
on the table, placed close to the child. The third experimenter 
controlling the recording in another room confirmed if the 
object was at the center of the image and if not small 
adjustments were made on the head-mounted camera gear. 
The same procedure was repeated for the child, with an object 
close to the child’s hands. After this calibration phase, the 
experimenters removed all objects from the table, asked the 
parent to start the experiment and left the room. The 
instructions given to the parent were to take all three objects 
from one set, place them on the table, play with the child and 
after hearing a command from the experimenters, remove the 
objects in this trial and move to the next set to start the next 
trial. There were a total of six trials, each about 1 minute long. 
The entire study, including initial setup, lasted for 10 to 15 
minutes. 

IV. IMAGE SEGMENTATION AND OBJECT DETECTION  
The recording rate for each camera is 10 frames per second. In 
total, we have collected approximately 10800 (10 × 60 × 6 × 
3) image frames from each interaction. The resolution of 
image frame is 320 × 240.  
The first goal of data processing is to automatically extract 
visual information, such as the locations and sizes of objects, 
hands, and faces, from sensory data in each of three cameras. 
These are based on computer vision techniques, and include 
three major steps (see Figure 3). Given raw images from 
multiple cameras, the first step is to separate background 
pixels and object pixels. This step is not trivial in general 
because two first-view cameras attached on the heads of two 
participants moved around all the time during interaction 
causing moment-to-moment changes in visual background. 
However, since we designed the experimental setup (as 
described above) by covering the walls, the floor and the 
tabletop with white fabrics and asking participants to wear 
white cloth, we simply treat close-to-white pixels in an image 
as background. Occasionally, this approach also removes 
small portions of an object that have light reflections on them 

as well. (This problem can be fixed in step 3). The second step 
focuses on the remaining non-background pixels and breaks 
them up into several blobs using a fast and simple 
segmentation algorithm. This algorithm first creates groups of 
adjacent pixels that have color values within a small threshold 
of each other. The algorithm then attempts to create larger 
groups from the initial groups by using a much tighter 
threshold. This follow-up step of the algorithm attempts to 
determine which portions of the image belong to the same 
object even if that object is broken up visually into multiple 
segments. For instance, a hand may decompose a single object 
into several blobs. The third step assigns each blob into an 
object category. In this object detection task, we used 
Gaussian mixture models to pre-train a model for each 
individual object. By applying each object model to a 
segmented image, a probabilistic map is generated for each 
object indicating the likelihood of each pixel in an image 
belongs to this special object. Next, by putting probabilistic 
maps of all the possible objects together, and by considering 
spatial coherence of an object, our object detection algorithm 
assign an object label for each blob in a segmented image as 
shown in Figure 2. As a result of the above steps, we extract 
useful information from image sequences, such as what 
objects are in the visual field at each moment, what are the 
sizes of those objects, and whether a hand is holding an object 
(from the top-down view), which will be used in the following 
data analyses.  

V. DATA ANALYSIS AND RESULTS  
The multi-camera sensing environment and computer vision 
software components enable fine-grained description of child-
parent interaction and from two different viewpoints. In this 
section, we report our results while focusing on comparing 
sensory data collected simultaneously from two views. We are 
particularly interested in (1) the differences between what a 
child sees and what the mature partner sees, and (2) what may 
cause potential differences (Gibson, 1969).  

Figure 2: The overview of data processing using computer vision techniques. Left: we first remove background pixels from an image and then spot objects and 
hands in the image based on pre-trained object models. The visual information from two views is then aligned for further data analyses.  Right: the processing 
results from the bird-eye view camera.  



IEEE International Conference of Development and Learning 
 

4

A. Two Different Views of the Same World  
Figure 3 shows the proportion of each object or hand in one’s 
visual field over a whole trial (three snapshots taken from the 
same moments from these two views). Clearly, the child’s 
visual field is substantially different from the parent’s. Objects 
and hands occupy the majority of the child’s visual field and 
the whole field changes dramatically moment by moment. In 
light of this general observation, we developed several metrics 
to quantify three aspects of the differences between these two 
views.  
The composition of visual field. From the child’s 
perspective, objects occupy about 20% of his visual field. In 
contrast, they take just less than 10% of the parent’s visual 
field. Although the proportions of hands and faces are similar 
between these two views, a closer look of data suggests that 
the mother’s face rarely occurs in the child’s visual field while 
the mother’s and the child’s hands occupy a significant 
proportion (~15%-35%) in some image frames. From the 
mother’s viewpoint, the child’s face is always around the 
center of the field while the hands of both participants occur 
frequently but occupy just a small proportion of visual field. 
We will further discuss the role of hands in visual perception 
later.   
The salience of the dominating object. The dominating 
object for a frame is defined as the object that takes the largest 
proportion of visual field. Our hypothesis is that the child’s 
view may provide a unique window of the world by filtering 
irrelevant information (through movement of the body close to 
the object) enabling the child to focus on one object (or one 
event) at a single moment. To support this argument, the first 
metric used here is the percentage of the dominating object in 
the visual field at each moment. In the child’s view, the 
dominating object takes 12% of the visual field on average 
while it occupies just less than 4% of the parent’s field. The 
second metric measures the ratio of the dominating object vs. 
other objects in the same visual field, in terms of the occupied 
proportion in an image frame. A higher ratio would suggest 
that the dominating object is more salient and distinct among 
all the objects in the scene. Our results show a big difference 
between two views. In more than 30% of frames, there is one 
dominating object in the child’s view which is much larger 

than other objects (ratio > 0.7). In contrast, in less than 10% of 
time, the same phenomenon happens in the parent’s view.  
This result suggests not only that children and parents have 
different views of the environment but also that the child’s 
view may provide more constrained and clean input to 
facilitate learning processes which don’t need to handle a large 
amount of irrelevant data because there is just one object (or 
event) in view at a time.  
The dynamics of visual field. The dominating object may 
change from moment to moment, and also the locations, 
appearances and the sizes of other objects in the visual field 
may change as well. Thus, we first calculated the number of 
times that the dominating object changed. From the child’s 
viewpoint, there are on average 23 such object switches in a 
single trial (about 1 minute or 600 frames). There are only 11 
per trial from the parent’s view. These results suggest that 
children tend to move their head and body frequently to switch 
attended objects, attending at each moment to just one object. 
Parents, on the other hand, don’t switch attended objects very 
often and all the objects on the table are in their visual fields 
almost all the time.  
In summary, the main result so far is that the adult’s and 
child’s views are fundamentally different in (1) the spatial 
distributions of hands and objects in the child’s visual field 
and where they are in the parent’s field; (2) the salience of 
individual objects and hands in those two visual fields; and (3) 
the temporal dynamic structures of objects and hands in the 
two views. 

B. The Role of the Hands in Visual Perception  
What causes the differences between the two views? Why the 
child’s viewpoint is less clustered and more constrained 
compared with the caregiver’s view? There are three possible 
interpretations. First, the difference may be due to the 
geometry of the setup. The child is shorter and therefore close 
to the table while the caregiver is taller and further away from 
the objects. However, our experimental setup wherein the 
caregiver and the child sit at the same height excludes this 
possibility. Second, the change of the child’s visual field can 
be caused by gaze and head movement. To test this 
hypothesis, we have used a motion tracking system to measure 
head movements in the same setup and the results show that 

Figure 3: A comparison of the child’s and the parent’s visual fields. Each curve represents a proportion of an object in the 
visual field over the whole trial (yellow is hands). The total time in a trial is about 1 minute (500 frames). The three pairs of 
snapshots from the two views show the image frames from which the visual field information was extracted.  
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both participants rarely move their head toward (closer to) the 
toys. In addition, gaze shifting in this current experiment may 
change the location of the object but not the size of an object 
in one’s visual field. The third possibility is that the difference 
may be caused by both the child’s own hand movements and 
the caregiver’s hand movements. We already know that both 
the child’s hands and the caregiver’s hands are frequently 
occurring in the child’s visual field. More specifically, the 
parent’s eyes are rarely in the child’s visual field but 
meanwhile the parent’s and the child’s own hands most often 
occupy a big proportion of the child’s visual field. In light of 
this, we next measure how hands may influence the visual 
perception of those objects.  
What are hands doing? Our first measure shows that both 
participants actively move their hands and use their hands to 
grasp and manipulate the objects on the table. As shown in 
Figure 4, more than 90% of time, at least one object is in 
either the child’s hands or the caregiver’s hands. Meanwhile, 
almost 40% of the time that both the caregiver and the child 
are holding some objects which can be categorized into two 
cases: 11% on the same object and 26% on different objects. 
We suggest that hands (and other body parts, such as the 
orientation of the trunk) may play several important roles in 
this toy-play everyday interaction. First, hands may signal 
social cues to the other social partner indicating the object of 
interest in real time. Moreover, since their hands are holding 
objects all the time, how an object is perceived by the child 
may depend on whether an object is in the child or the 
caregiver’s hands.   

How is an object in hands perceived? Indeed, we find that 
those objects hold by either the child’s hands or the 
caregiver’s hands are significantly larger in the child’s view 
compared with other objects in the environment. As shown in 
Figure 5, this result further supports our argument that it is not 
because of the geometry differences between the child and the 
parent that causes the big difference in two views. Instead, the 
child’s own actions and the caregiver’s actions determine what 
the child visually perceives. We also note that this phenomena 
doesn’t happen randomly and accidently. The child most often 
intentionally moves his body close to the dominating object 
and/or uses his hands to bring the object closer to his eyes; this 
makes one object dominate the visual field. In addition, to 
attract the child’s attention, the caregiver also moves the 

object in hands closer to the child’s eyes. Thus, both the 

child’s own action and the caregiver’s action have direct 
influences on the child’s visual perception and most likely also 
on the underlying learning processes that may be tied to these 
perception-action loops.  
How does the perception-action loop influence learning? 
Both artificial and natural learning systems face the 
uncertainty and ambiguity inherent to real-world learning 
contexts. In object recognition, a learning system needs to 
segment a to-be-learned object from the background and 
extract visual features that are reliably associated with an 
object category. In word learning, a learning system needs to 
find the relevant object from all possible referents that are 
temporally co-occurring with a to-be-learned word. Figure 6 
shows that almost all the time that the dominating object 
(defined above) at a moment from the child’s view point is 
either in the child’s hands or the caregiver’s hands. Thus, 
using hands to select one single object in the visual field could 
facilitate object learning and language learning by allowing 
learners to focus on one single object at a time. If there is one 
dominating object at one moment, then human learners can 
attend to and concentrate on that object – an embodied 
solution to filter irrelevant information, to disambiguate the 

Figure 4: The proportion of time that the child’s hands and/or the 
caregiver’s hands are holding objects.  

Figure 6: A comparison of the average sizes of objects in the child’s 
hands, in the caregiver’s hands or not in hands from the child’s 
viewpoint.  

Figure 5: the average sizes of objects in the child’s hands, the caregiver’s 
hands or not in anyone’s hands from the child’s viewpoint.  
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cluttered learning environment, and to learn those objects and 
names one at a time. Meanwhile, we also note that the 
caregiver’s view point is also influenced by her own actions 
but not much by the child’s actions. Critically, it is because of 
the child’s hands and the caregiver’s hands that the 
dominating object is more salient than other objects in the 
child’s view. The body constrains and narrows visual 
information perceived by a young learner. 

VI. GENERAL DISCUSSION AND CONCLUSIONS 
In marked contrast to the mature partner’s view, the visual 
data from the child’s first-person view camera suggests a 
visual field filtered and narrowed by both the child’s own 
action and the caregiver’s action. Whereas parents may 
selectively attend through internal processes that increase and 
decrease the weights of received sensory information, young 
children may selectively attend by using the external actions 
of their own body and the bodily actions of the caregiver. This 
information reduction through their bodily actions may 
remove a certain degree of ambiguity from the child’s learning 
environment and by doing so provide an advantage to 
bootstrap learning. Our result suggests that an adult (e.g. 
experimenters) view of the complexity of learning tasks may 
often be fundamentally wrong. Young children may not need 
to deal with all the same complexity from an adult’s viewpoint 
– some of that complexity may be automatically solved by 
bodily action and the corresponding sensory constraints. 
Hence, the results in the present paper shed lights on a new 
direction to study powerful human learning – the one based on 
embodied solution. Here we report beginning progress in 
reaching these goals and moreover suggest that this new 
direction will bring unexpected new discoveries about the 
visual environment from the learner’s point of view, about the 
role of the body, and about the interaction between 
sensorimotor behaviors and internal learning processes.  
A deeper understanding of human learning is directly relevant 
to building artificial intelligent systems that learn from, teach, 
and work with humans. Decades of research in artificial 
intelligence suggest that flexible adaptive systems cannot be 
fully pre-programmed. Instead, we need to build systems with 
some preliminary constraints that can create and exploit a rich 
and variable learning environment. Considerable advances 
have been made in biologically inspired forms of artificial 
intelligence (e.g. Breazeal and Scassellati 2002; Asada et al. 
2001; Brooks et al. 1998; Steels and Kaplan 2001; Yu, Ballard 
and Aslin, 2005; Steels and Vogt, 1997; Weng, et al., 2001, 
Gold and Scassellati, 2007).  Young children are fast learners 
and they do so through their bodily interactions with people 
and objects in a cluttered world. Could we build a 
computational system that accomplishes the same learning 
task? If so, what attributes of a young child are crucial for the 
machine to emulate? We believe that studies in human 
learning provide useful hints in various aspects to answer 
those questions. First, human studies suggest what kinds of 
technical problems need to be tackled in a computational 
system. Second, the results from human studies like the 
present work suggest what are possible solutions employed by 
human learners and what might be missing mechanisms in the 

current AI systems. More specifically, we suggest the 
importance of embodied solution – how the young learner and 
his social partner may use their bodily actions to create and 
dramatically shape regularities in a learning environment to 
facilitate learning – which may be a critical component for AI 
systems to reach human-level intelligence.  
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