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Abstract—Vision is basically a sensory modality, so it is no
surprise that the investigation into the brain’s visual functions
has been focused on its sensory aspect. Thus, questions like (1)
how can external geometric properties represented in internal
states of the visual system be grounded, (2) how do the visual
cortical receptive fields (RFs) form, and (3) how can visual shapes
be recognized have all been addressed within the framework
of sensory information processing. However, this view is being
challenged on multiple fronts, with an increasing emphasis on
the motor aspect of visual function. In this paper, we will review
works that implicate the important role of motor function in
vision, and discuss our latest results touching upon the issues of
grounding, RF development, and shape recognition. Our main
findings are that (1) motor primitives play a fundamental role in
grounding, (2) RF learning can be biased and enhanced by the
motor system, and (3) shape recognition is easier with motor-
based representations than with sensor-based representations.
The insights we gained here will help us better understand
visual cortical function. Also, we expect the motor-oriented view
of visual cortical function to be generalizable to other sensory
cortices such as somatosensory and auditory cortices.

I. INTRODUCTION

The primary visual cortex (V1), a major visual process-

ing area in the brain, has been extensively studied through

neurophysiological and theoretical/computational methods. In

the past few decades, researchers investigated various issues

including what kind of stimulus properties are encoded in V1

neuron’s spikes, how the receptive fields (RFs) of V1 neurons

develop over time and how they are influenced by natural stim-

ulus statistics, what kind of topographic organization exists

in V1, etc. (see [1] for a review). Since vision is basically

a sensory modality, almost all of these investigations have

focused on the sensory aspect of visual information processing.

However, there is a strong indication that visual function

is inseparable from motor function and only through this

perspective we can reveal how the visual cortex really works.

Earlier theoretical investigations by Dewey [2], Bergson [3],

and Wittgenstein [4], emphasized the importance of action in

(visual) perception. More recent works came to similar conclu-

sions, e.g., Varela et al.’s enactive cognition [5], Humphrey’s

work on evolution of consciousness [6], O’Regan and Noe’s

sensorimotor theory of perception [7], Llinás’s virtual action

patterns [8], Schank’s conceptual dependence theory based

on motor primitives [9], Von Foerster’s eigenbehavior [10],

[11], and Freeman’s pragmatism-view of brain function [12].

Concrete experimental works also point in the same direction,

i.e., motor function is inseparable from perceptual function.

For example, the following works show the tight integration

of motor function with visual perceptual function: Milner and

Goodale’s work on the ventral and dorsal visual pathways [13],

Rizzolatti et al.’s work on the mirror neurons (neurons in the

prefrontal cortex responding both to visually perceived gesture

and to enacted gesture of the same type) [14], Salinas’s work

on motoric requirements influencing RF form [15], etc. There

is also a large number of engineering approaches on enactive

perception/cognition [16]–[18], behavioral robotics [19], [20],

and autonomous mental development [21] that emphasize the

sensorimotor link.

In this paper, we will review our prior works on how

such a motor perspective can be applied to the modeling and

understanding of visual cortical development and function.

More specifically, we will show how (1) grounding [22], (2)

RF development [23], and (3) shape recognition [24] can be

influenced and aided by motor function.

The remainder of the paper is organized as follows. We will

first discuss the three topics above in individual sections, each

section containing background and our experimental results.

Finally, we will discuss the implications of these results on

understanding visual cortical function, and provide a summary

in the conclusion.

II. GROUNDING OF INTERNAL VISUAL REPRESENTATIONS

How does an agent, which cannot directly access the ex-

ternal world but only its internal state (i.e., brain state) learn

the basic properties of the external world [25]? That is, how

can the agent decode (or ground) its internal state (e.g., the

activity patterns in V1), based on the internal state only? For

example, consider Fig. 1. External observers (e.g., scientists)

have access to both the external input and the internal states of

the brain under observation (Fig. 1(a)), so we can infer what

properties are encoded by the internal state. However the brain

can only access the internal state of itself (Fig. 1(b)), so the

approach taken by the external observer is not applicable. We

showed that this problem can be solved through the use of

action (Fig. 2) that fulfills a simple criterion of internal state

invariance (Fig. 3) [22]. Note that by “invariance”, we simply

mean that the activity pattern does not change over time: We
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Fig. 1. External vs. Internal Observer. (a) External observers (e.g.,
scientists observing a brain) have full access to both the environmental
stimulus and the spikes. By correlating the spikes to the input, the stimulus
properties carried by the spikes can be inferred. (b) Internal observers (e.g.,
downstream neurons) have access to the upstream neuron’s spikes only,
making such an inference seem impossible. Adapted from [22], [26].
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Fig. 2. A Visuomotor Agent. The agent has a limited field view and a set
of sensory primitives f . Sensory primitives f receive input and generate an
activity in the sensory array s. Adapted from [22], [26].

are not referring to perceptual invariances such as translation,

rotation, and scaling invariance.

Consider a simple agent shown in Fig. 2, with limited visual

field view and a set of sensory receptive fields. Neurons with

sensory receptive fields (shown as oriented lines) receive input

and generate activities in the sensory array s (modeling the

visual cortex). Based on the activity of the sensory array,

motor response (eye movement) can be generated. This can

be modeled as a mapping π. How can this added capability

to move the gaze help in decoding (or grounding, [27]) the

internal state (the spikes in the visual cortex)? Our main ob-

servation was that the meaning of the spikes can be recovered

through a specific kind of eye movement. Take the state of

the agent shown in Fig. 3 for example. At time t = 1, the

input activates the neuron tuned to 45◦ input. (Note that the

agent has access to the neuron’s spikes.) Suppose the agent

happened to move in the 45◦ direction and back (135◦). The

result would be that the internal state does not change over

time (t = 1, t = 2, t = 3, on the right) even though the

agent is generating motion. The key observation here is that

(1) the property of such a motion and (2) the stimulus property

represented by the spike are identical. In converse, if the agent

had the goal of moving while maintaining its internal state

invariant over time, it will end up generating action that reflects

the property of the encoded spike. This way, the internal state

can be decoded (grounded), all without direct access to the

external world. Thus, internal state invariance can serve as a

strong criterion for grounding internal representations (which

naturally includes visual cortical representations).

In this following, we will describe how to process the input
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Fig. 3. Invariance in Internal State during Motion. The agent moving
in diagonal direction (45◦ or 135◦ in this example) will keep the internal
state unchanged. By generating a behavior congruent with input stimulus, the
agent can infer external world from internal state. Adapted from [22], [26].

image, generate sensory activities, learn the mapping from the

sensory states to motor primitives.

A. Initial input processing

Below, we follow the steps described in our earlier work

[22], so we will only provide a sketch of the overall process.

Please refer to [22] for details. The whole process is summa-

rized in Fig. 4, from left to right. First, the raw input image IR

(640× 480) is convolved by a Difference of Gaussian (DoG).

The DoG filter was 15× 15 in size, with the width parameter

σ set to 15/4. The resulting image was normalized to have

zero mean and the max range scaled down between -1.0 and

1.0. This resulted in the convolved image ID. From this image

a small 9× 9 area was sampled, resulting in the input I .

B. Response generation

The cortical response generation process is outlined in

Fig. 4. Given a set of receptive fields the vectorized dotproduct

between the input sample I and the receptive fields Gi are

calculated, resulting in the response vector r. (In the figure,

eight oriented Gabor filters are shown, but these can be an

arbitrary pattern, as it may have to be adapted throughout

development.) The vector r is then normalized by its l2-norm

||r||. The current state index s is determined by:

s = arg max
θ=1..n

ri, (1)
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Fig. 4. Response Generation. An overview of the response generation
process is shown. See text for details.
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Fig. 5. Reinforcement Learning of Internal State to Action Mapping.

The rows represent the internal sensory state (orientation in this case), and
the columns the direction of motion (gaze). For each orientation, in an ideal
case, there are two optimal directions to move to maintain invariance in the
internal state. For example, for 0◦ orientation, one can either move left or
right. Thus, the reward table R(s, a) has a diagonal structure as shown above,
in an ideal case. Adapted from [22], [26].

where θ is the index of the receptive field, and n the number

of receptive fields.

C. Learning the Motor Policy

Learning in the agent model occurs in two different parts:

(1) internal state to action mapping π, and (2) receptive

field structure. Learning of π follows closely our previous

work [22], so again, we will just provide a brief overview

rather than going into details. The agent’s gaze is controlled

by a stochastic process based on the conditional probability

P (a|s) where a ∈ A is the gaze direction and s ∈ S is

the internal state indicating the maximally responding unit in

the sensory array. Given a specific current state s, action a
is chosen with the probability P (a|s). The task is to learn

this conditional probability so that when the above scheme is

employed, maximum state-to-state invariance is achieved over

time. For convenience, let us write R(s, a) (and call it the

reward table) instead of P (a|s), in the following (see Fig. 5).

R(s, a) is basically trained using a reinforcement learning

algorithm. The degree of invariance serves as the reward

(ρ), and it is simply defined as the dotproduct of successive

response vectors at time t − 1 and t: ρt = rt · rt−1. R(s, a)
is updated as:

Rt(st−1, at−1) = Rt−1(st−1, at−1) + αρt (2)

where Rt(·, ·) is the reward table at time t and α the learning

rate (set to 0.002 typically). Then, Rt(st−1, a) values are

normalized by their sum for all a ∈ A.

D. Results

After training the algorithm for 200,000 iterations on a

natural image (Fig. 4), the reward table R(s, a) converged to

a nearly ideal pattern (Fig. 6(c)). The gaze trajectory before

learning is erratic and random-walk-like (Fig. 6(d)), but it

becomes more organized and reveals the underlying image

structure (Fig. 6(e)). See [22] for full results.

III. RF DEVELOPMENT AND MOTION

The discussion in the preceding section did not take into

account the fact that receptive fields are not fixed and given

(a) Initial R(s, a) (b) Ideal R(s, a) (c) Final R(s, a)

(d) Initial trajectory (e) Learned trajectory

Fig. 6. Learned R(s, a) and Behavioral Results. The (a) initial, (b) ideal,
and (c) final learned R(s, a), and the (d) initial and (d) final gaze trajectories
are shown. (a) Initial reward table is random. (c) The learned reward table
shows the signature diagonal pattern of the ideal one (b). (d) Initial gaze
trajectory is erratic, similar to a random walk. The repeating color coding
from black to red to yellow to white represent time. Note that the DoG-filtered
image is shown in the background just as a reference, and is not directly used
in gaze generation. (e) Gaze trajectory after learning shows more structure,
revealing the underlying image structure. Adapted from [22].

from the beginning. Further, for an agent residing in a specific

environment, its sensory receptive fields should reflect the

statistics of the external stimulus space. Below, we will inves-

tigate if receptive field development and grounding proceed

simultaneously.

Neurons in the primary visual cortex respond to specific

patterns of visual input. These patterns define the receptive

field of the neurons (see [1] for a review). Thus, in some

sense, the neurons “encode” visual features resembling their

receptive fields.

How these encodings are learned has been intensively

studied, both in neuroscience [28], [29] and in computational

models [1], [30]–[35]. The focus of these earlier studies has

been on the sensory aspect only (which was their prime lim-

itation), i.e., the representational properties relating to natural

image statistics and information theoretic concerns.

Only recently researchers started to raise questions about

how subsequent stages of visual processing can utilize the

response of the primary visual cortical neurons. For example,

Salinas showed that functional requirements of downstream

(motor) neurons determine the response property of early

sensory neurons [15], and Sejnowski proposed that we should

look at the “projective fields” as well as receptive fields [36].

In our previous work reviewed in Sec. II, we proposed a

model based on reinforcement learning to allow subsequent

stages discover the encoded feature properties in visual cortical

spikes (i.e., “decode” the spikes, or semantically ground the

representations), through the use of motor primitives [22],

[24], [26], [37]. However, in that model, the receptive fields

had fixed oriented Gabor patterns. In this section, we will

extend our previous model to include receptive field devel-

opment. Unlike approaches based on statistical properties of

images alone, we propose that receptive field development

should take into account the motor component.

There are other works where learning of receptive fields



are modulated by the motor system [17], [18], but the role (or

goal) of the motor component was unclear. It is apparent that

the involvement of the motor system will inevitably bias the

statistical properties of the received input [38], and that will

lead to differentiation in structure and function of the visual

cortex [1], [30].

The real question however is, is there anything beyond that?

In our case, the goal of such motor engagement is clear:

autonomous semantic grounding of internal brain states. We

present a model which uses (1) competitive learning to develop

receptive fields and (2) reinforcement learning to link the

visual cortical spikes to meaningful motor primitives. Our

results suggest that receptive field development is strongly

influenced by the motor system (confirming results by other

researchers), and, more importantly, that visual receptive fields

and the sensorimotor mapping that helps decode the spikes can

develop simultaneously.

A. Receptive Field Learning

The agent not only learns the mapping from receptive fields

to motor primitives but also adapts its receptive fields at the

same time. We used competitive learning to adapt the RFs:

gij =
gij + α(Iij − gij)∑

mn gmn + α(Imn − gmn)
, (3)

where gij is a weight of the RF to location (i, j) in the

input, and Iij the input at location (i, j), and α the learning

rate. The α value was positive for the RF with the highest

response and negative for the other RFs. The magnitude of α
was initially 0.02 and 0.002 for the positive and the negative

case respectively, and both decayed exponentially over time

(αt = αt−1 × 0.99998 where t is time step). Furthermore,

receptive fields were trained only when the correlation in pre-

vious and current response vectors were above a certain level

(typically 0.2), taking into account the invariance criterion.

B. Experiments and Results

In order to assess the influence of motor factors in receptive

field learning, and to investigate whether receptive field devel-

opment and internal-state-to-action mapping can be learned

simultaneously, we conducted two experiments.

In the first experiment, we compared the development of

receptive fields under two different, fixed internal-state-to-

action mappings: (1) random reward table (Fig. 6(a)), and (2)

ideal reward table (Fig. 6(b)). Again, these reward tables were

fixed throughout the learning trial. With this, we could measure

the effects of motor policy on receptive field learning. In this

experiment, we trained 8 receptive fields on the natural image

shown in Fig. 4. The agent was trained for 70,000 iterations.

Fig. 7 shows that with random motor policy, the receptive

fields are formed slowly and malformed (second and the last

column), and the order is random whereas with ideal R(s, a)
motor policy, the receptive fields are formed quickly and more

importantly the order reflect the motor primitives. Thus, the

property of the motor primitives (“downstream requirement”)

dictates the receptive field property (cf. [15]).
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(a) RF w/ Random Policy (b) RF w/ Ideal Policy

(c) Reference RFs (d) Reference RFs

Fig. 7. Learned receptive fields (RFs) using fixed policies. (a, b) The
fixed reward tables; (c, d) the learned receptive fields over time, from top to
bottom; and (e, f ) reference receptive fields (plain Gabor filters) are shown.
In all plots, black represents min and white max. The receptive fields trained
with a random policy has malformed receptive fields (second and last column),
which is not the case for those trained with the ideal policy. Adapted from
[23].
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(a) Learned RF over time

(b) Learned R(s, a)

Fig. 8. Learned Receptive Fields and R(s, a). (a) The learned RFs over
time and (b) the final R(s, a) are shown. Adapted from [23].

In the second experiment, we allowed both the receptive

fields and the reward table to learn at the same time. The

agent was given 16 sensory receptive fields (for finer rep-

resentation of orientation) and thus had 32 corresponding

motor primitives, and trained for 100, 000 iterations, with other

conditions identical to those in Sec. II. Fig. 8 shows the

learned receptive fields over time from top to bottom, and the

final R(s, a) values. The receptive fields learned reasonably

well, but the reward table R(s, a) looks totally disorganized.

However, this is simply because the ordering of receptive fields

do not follow that of the standard, gradual change shown in

Fig. 7(c). Reordering the learned receptive fields (their column

location) gives Fig. 9(a). To reflect the new ordering, the

reward table’s rows also need to be rearranged, which gives

the reordered reward table Fig. 9(b), which shows the diagonal



(a) Reordered final RFs (b) Reordered final R(s, a)

Fig. 9. Reordered Learned Receptive Fields and R(s, a). (a) The receptive
fields in Fig. 8 (the columns) were reordered to have a similar ordering as
Fig. 7(c). (b) The rows in Fig. 8(b) were reordered accordingly, resulting in a
reordered R(s, a). Once reordered, the diagonal structure typical of an ideal
reward table becomes apparent. Adapted from [23].

(a) Sensor-based Representation (b) Motor-based Representation

Fig. 10. Sensory vs. Motor Representation of Shapes. The (a) gray-scale
bitmap-based sensory representation and (b) vector-based motor representation
are compared. Adapted from [24].

pattern typical of an ideal case. Certain orientations are over

expressed, such as the horizontal one, and as a result, there

are more rows in the reward table associated with horizontal

movement (see the first five rows in the reordered R(s, a)).

IV. SHAPE RECOGNITION BASED ON MOTOR

REPRESENTATIONS

The final topic of this paper is about visual shape recog-

nition [24]. The question we wish to address here is how

can the motor-based approach in the two sections above be

extended so that it can handle more complex visual tasks such

as shape recognition. To be more specific, what kind of internal

representations of visual shapes enable invariant recognition

(using “invariance” in the usual sense)? We believe Lashley’s

concept of “motor equivalence” [39] is a good starting ground

(see similar discussions in [8]). Motor equivalence is the

ability to generate basically the same kind of motor behavior

using different effectors (e.g., making a circular trajectory with

the eyes, head, finger, arm, etc.). Lashley’s main idea is that

there should be one shared motor representation that express

itself in these different behavioral output.

Here, we assess the relative merit of motor-based repre-

sentations compared to sensor-based representations. Given

a particular shape as in Fig. 10(a), processes similar to the

sensorimotor mapping method we described above would

result in a series of motor vectors as shown in Fig. 10(b).

The question is which one of these representations are easier

to learn and to generalize?

We generated one thousand random grayscale images (30×
30) containing circles, triangles, and squares of different sizes

at different locations (Fig. 10(a)), and traced these shapes to

generate an equivalent 900-dimensional vector containing a

sequence of gaze directions (Fig. 10(b)). (Note that the motor-

based representations are essentially normalized for translation

and scale, but not for rotation.) The inputs were fed through

a multilayer perceptron, trained using backpropagation (see

[24] for details). 75% of the input was used for training and
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Fig. 11. Speed and Accuracy of Learning of Shape Representations.

A comparison of (a) learning speed and (b) accuracy of sensory vs. motor
representations are shown. (a) The mean squared error (MSE) during training
shows that motor representations reach lower levels of error faster. (b)
The generalization performance (classification rate on novel test inputs) is
significantly higher (p = 0, n = 10) for the motor representations (97%)
than the sensory representations (28%). Adapted from [24].
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Fig. 12. Principal Components Analysis of Sensory vs. Motor Rep-

resentation of Shapes. The projection of the data points (all three shape
categories) onto the 1st and the 2nd PCA axes are shown for the sensory vs.
motor representations. (a) The projections of the three classes are inseparable
for the sensory representation, while (b) they are clearly separable for the
motor representation. Adapted from [24].

25% for testing. The results are reported in Fig. 11. Both the

training time and generalization performance on the test set

was much better for the motor-based representation.

A subsequent analysis using principal components anal-

ysis (PCA) explains the superior learnability of the motor

representations (Fig. 12). The sensory representations of the

shape classes are broadly scattered and overlap with each

other, whereas the motor representations are concentrated into

clusters and are separated.

These results show that motor-based internal representa-

tions could be a good underlying mechanism for invariant

shape recognition. The motor-based representations have built-

in invariances, but it could be argued that extracting such

invariances is easier through the mobilization of the motor

system than through static visual analysis.

V. DISCUSSION AND CONCLUSION

The main contribution of our work summarized in this

paper is to have shown the critical role played by the motor

system in grounding, RF learning, and shape recognition. Our

investigation is strongly grounded in neuroscience research,

which allows us to bring in theoretical frameworks into neuro-

science investigations. The framework that we presented here

is currently focused on the visual cortex, but it is quite general

enough so that it can be generalized to other cortical regions



such as the auditory cortex or the somatosensory cortex.

Whether the same is true for more qualitative modalities such

as color or olfaction is yet an open question.

One important implication of our work is that an organism’s

understanding of the external world is fundamentally bounded

by the types of motor primitives available to the organism.

Recent results by Hatsopoulos et al. [40] showed how these

motor primitives (what they call “pathlets”) are encoded and

laid out in the motor cortex. Linking such an organization to

the sensory counterpart could lead to important discoveries.

In summary, we have shown how the motor system plays

a key role in visual function, and we expect our approach

to help us better understand the development and function

of the visual cortex. In the long run, similar approaches will

allow us to build more autonomous agents that have inherent

understanding of itself and the environment.
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