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Abstract—This paper presents preliminary results for using
dynamic systems models to describe physiological and behav-
ioral responses (cortisol and activity) to emotionally stressful
events. Linear discrete-time models are used to approximate
the nonlinear model of the LHPA axis around an assumed
nominal operating condition. Measurements are taken of cortisol
(from saliva) and activity (with an accelerometer). These two
measurements are considered as either inputs or outputs of
the model. Modeling choices are discussed in detail. Results
are presented that indicate activity is better interpreted as an
input and cortisol as an output. In addition, the paper discusses
briefly how the resulting dynamic systems models can be used
for statistical analysis, as well as for integrating across multiple
levels of stress responses.

I. INTRODUCTION

This paper presents preliminary results of a larger project
with the goal of describing and examining the processes
involved in regulation of systems inherent to emotional ex-
pression as observed in preschool-aged boys and girls. Data
was collected over three days in three different domains:
physiologic reactivity (salivary cortisol); behavioral reactiv-
ity (as indexed by motor activity and facial expressions of
emotional behavior); and moderating factors (child gender,
temperament, inhibition and executive functioning; parent
emotionality and emotion socialization; and culture). This
paper develops dynamic systems models to describe individual
children’s trajectories of either behavioral reactivity (amount
of motor activity) or physiological reactivity (salivary cortisol
levels), with an emotional “impulse” input. Moderating factors
are not included in this analysis.

Section II, gives some background on the importance of
emotion regulation processes and the roles played by cortisol
and activity. The design of the study that generated the data
we use herein for modeling is also presented. Section III
describes the types of models that we have built for the
different responses. Finally, Section IV discusses our findings
thus far, and outlines our future work.

II. BACKGROUND
A. Emotion regulation
Over the past two decades, developmental studies on emo-
tion regulation have found that infants and toddlers manifest
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clear individual differences in their responses to environmental
stressors and in their abilities to regulate strong negative emo-
tions [1], [2], [3]. During the preschool years, children begin to
develop additional inhibitory abilities to more finely regulate
their emotional states and develop greater control over their
emotional expressions [4]. These early-established patterns
of regulatory competence are predictive of both biological
and behavioral adjustment throughout the lifespan [5], [6].
Children who do not learn to regulate their emotional states
and behaviors during the preschool period are at high risk of
psychopathology and numerous problems later in life [7], [8].

Despite its obvious importance, the study of emotion reg-
ulation has been difficult because it involves coordination
across behavioral, psychological, and neuroendocrine subsys-
tems that develop over time. Research into the development
of each of these subsystems has made significant progress
in the past decade, but the regulation of this system as a
whole is not well understood. Moreover, cultural differences in
behavioral factors related to regulation have been found, but
their relationships to physiological substrates have not been
examined. The present study uses a dynamic systems approach
to examine children’s responses to an emotional challenge task
by examining the role of the emotional “impulse” in response
to the challenge. Motor behaviors that occur in conjunction
with this task and the production of cortisol, a major stress-
related hormone produced by the adrenal gland, are densely
sampled, and can be considered as either inputs or outputs in
the modeling approach.

B. Cortisol and activity

The LHPA axis plays an important role in modulating our
physiological and behavioral reactions to stress. Cortisol is the
end-product of LHPA activation, can be reliably measured in
saliva, and can serve both as a regulator and an indicator of a
stress response. Following the onset of a stressor such as an
emotional challenge or exercise, the LHPA axis first triggers
an autonomic response, such as an increase in heart rate, and
later triggers the release of cortisol. It may take anywhere from
15 to 30 or more minutes for cortisol levels to increase, with
both the peak levels and time to peak highly variable across
individuals, situations, and type of stressor [9].



In addition to emotionally “stressful” responses, motor ac-
tivity is highly related to changes in cortisol and other aspects
of the autonomic nervous system [10], but these changes are
not straightforward. Some work has examined the relationship
between cortisol and activity in the form of exercise. Cortisol
levels have been found to remain constant or slightly decrease
at low levels of exercise intensity for healthy adult males, but
after 15 or more minutes of high intensity exercise (anywhere
from 60-100% of a participant’s maximal oxygen uptake),
they have been found to increase anywhere from 35% to
85% above resting levels [11], [12]. Similar results have been
found for children around 10 years of age [13]. However,
few studies have been done on the effects of exercise on
cortisol levels in healthy children younger than 10 years of age.
Furthermore, there is a lack of studies relating cortisol levels
to regular physical activity. Although a positive correlation
has been found between cortisol levels and accelerometer
activity counts in women with anorexia nervosa [14], no
studies have been carried out on other groups. It is therefore
of interest to investigate this relationship further, especially in
children, whose HPA stress response is particularly sensitive
to seemingly small variations among stressors [9].

C. Study description

112 four-year-old children attending preschool participated
in the study: 53 in Ann Arbor, USA and 59 in Beijing,
China. The children participated over three consecutive days,
for approximately two hours each day. On each day, they
arrived at the same time of day (although the time could be
different for each participant). The arrival time is denoted by
t = —30. After 30 minutes of quiet play with a research
assistant (experimenter), they were engaged in a planned
stressful task that started at ¢ = 0 and lasted approximately
2-5 minutes. After this stressful task, some simple behav-
ioral tasks and videos occupied the rest of the two hour
sampling period without intending to induce additional stress
responses. Cortisol was sampled densely over the two hour
period (approximately every 10 minutes, as discussed below).
Activity was measured in counts, sampled at 32Hz and logged
over 15-second epochs for the two-hour period. We used an
omnidirectional accelerometer (Actical, Mini Mitter Co.) that
attached snugly to the child’s waist via an adjustable elastic
strap. It produced time-stamped output that was referenced to
cortisol sampling times.

On the first day, participants were asked to help the ex-
perimenter stuff envelopes. While this was not supposed to
be stressful, and was intended as a baseline, the experimenter
did leave the child alone in the room for three minutes (180
seconds). We refer to the day one task as the envelope task.
The other two tasks were designed to elicit strong emotions
from the pre-school children. Half of the participants did task
two on day two and the other half did task two on day three.
In the prize task (task two), participants were asked to choose
among several objects (e.g., toy truck, bubbles, broken comb,
paper clip) which one they like best, second best, and so forth,
up to their least preferred. The experimenter left the room,

and another experimenter came in and gave the child their
least preferred prize, remained in the room, unresponsive, for
one minute, then left. After the child was left alone for one
more minute with the bad prize, the original experimenter
returned, exclaimed that there was a mistake, and gave the
child their favorite prize. In the computer task (task three),
the child played a simple computer game with the objective
of helping a farmer get his cows into the barn (by “lassoing”
them as they strayed off the path). The practice version was
always successful. The child was then left alone to play the
real game and told that if they won they would get a prize.
However, the real game was impossible to win, and the child
remained alone for one more minute after he/she lost the game.
When the experimenter returned, he or she noted that the game
was broken, and gave the child a prize anyway.

III. DESCRIPTIVE MODELING

In this section, we describe dynamic systems models that
are fit to the cortisol and activity data, and discuss the choices
that we made in the modeling. While the LHPA axis is
multivariable and nonlinear, here we consider a linear discrete-
time model as a linear approximation to the system around
an operating condition [15], [16]. We have measurements of
two “outputs” of the system: cortisol (as measured from saliva
samples) and activity (from the Actical accelerometers). While
we cannot determine the causal relationship between these two
variables from our data, we can fit mathematical models that
consider both of them as inputs and outputs, and see how well
these input-output models describe the observed data. We also
consider the stressful task, modeled as an impulse, as an input
to the system. Thus, we use single-input and multi-input linear
models, with a single output.

A. Cortisol data

1) Data availability: Although there were originally 112
participants in the study, this paper focuses on a subset of
59 of these participants (32 from China and 27 from the
US) for which we have complete cortisol and Actical data.
Although there are well-developed techniques for imputing
missing samples [17], and we have extensive notes available
for correcting the Actical logs, the analysis of this more
complete data set is left for future work.

Recognizing that cortisol follows a circadian rhythm with
highest values in the morning and lowest in the evening,
morning and evening cortisol samples were taken for the
participants and for their parents. In this paper, however, we do
not consider this circadian rhythm and model only the cortisol
reactivity in response to a stressful task. Cortisol samples are
taken from the participants when they arrive in the lab (at
time ¢t = —30), just before the start of the stressful task
(t = 0), every 10 minutes thereafter until ¢ = 60, then at
t = 75 and ¢ = 90. We chose to replace the two ¢t = 70
and ¢ = 80 samples by a single sample at ¢ = 75 so that all
of the cortisol samples for a child (including the morning and
evening samples) could fit on a single plate for analysis. Thus,
there are 10 samples per participant per task. We denote these



values by ¢(—30), ¢(0), ¢(10), ..., ¢(60), c(75), ¢(90) where ¢
indicates the raw cortisol value (in pg/dl).

While 10 samples seems like very few data points for
system identification purposes, we note that the collection
and processing of cortisol samples is relatively expensive, and
represented a large portion of the budget for the project. The
cost for each cortisol data point was approximately $15.

2) Interpolation: The dynamic systems models that we fit
assume that the data is regularly sampled over the time period.
To fill in the data where no samples were available, we use a
linear interpolation. For example,

c(—20) = (2/3)c(—30) + (1/3)c(0) (1)
c(—10) = (1/3)c(—30) + (2/3)c(0) 2)

A similar interpolation is used to obtain ¢(70) and ¢(80). Thus,
after interpolation, we have 14 data points, representing times
from —30 to 90, every 10 minutes: ¢(—30), ¢(—20), ..., ¢(90).

In [18], we considered only the cortisol response to a
stressful input, modeled as an impulse (activity was not consid-
ered). We concluded that there were no statistical differences
between the models fit with linear or logarithmic interpolation
of the data points. Since there are only a few interpolated
points, this conclusion is not surprising. Thus, we chose to
use linear interpolations for simplicity.

3) Magnitudes and scaling: The dynamic systems models
that we fit have an equilibrium point at 0, whereas the true
equilibrium cortisol value in the saliva is nonzero. To account
for this offset, we subtract from each time trace c(t) the
minimum value of the trace. Also, since we work in discrete
time, we divide all of the time values by 10. Thus,

y(k) = ¢(10k) — min c(t) 3)
and all modeling is done with the time series
y(=3),y(=2),...,y(9). All plots in this paper are for

the actual cortisol values and actual time, in minutes.

B. Actical data

The Actical records the number of accelerations (“‘counts’)
in intervals of 15 seconds, whereas the cortisol data is dis-
cretized every 10 minutes. We aggregate the Actical input by
summing up the counts in the 10-minute cortisol intervals, see
Figure 1. We also divide this sum by 10,000 so that the order
of magnitude of the Actical input is not significantly different
than the impulse or the cortisol. The experimenter pushed an
indicator button on the Actical sensor to mark the start and end
of testing. In this paper, we assume that the start of testing is at
the first marker press, and we just count forwards in intervals
of 10 minutes. If the net elapsed time between the first and last
button press in the Actical file was between 110-130 minutes,
we accepted the data set. Ongoing work is developing better
methods for qualifying and synchronizing the Actical data with
the cortisol and other data.

We have considered relating the 10-minute interval either
to the first or last minute of this interval, and have not found
statistically significant differences in the two choices. In this
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Fig. 1. Activity for participant C24, prize task. The raw Actical counts are

shown on the left. The input that we use for the model is shown on the right,
where the Actical counts have been summed over 10 minute intervals and
divided by 10,000.

paper, the results are presented using the sum of 10-minute
Actical activity referred back to the beginning of the interval;
the activity value at time k¥ = 3 is the sum of the activity
between ¢ € [30,40). Thus, the value of the activity at k =9
(t = 90) is always zero. Since the minimum is zero, we do
not subtract an offset.

Since the 10-minute interval is much larger than the Actical
resolution, and usually includes the entire emotional challenge
period, we also analyzed this activity data on a finer time scale.
We divided the data into the pre-challenge period (from the
introduction of the task until until the experimenter leaves the
room), the challenge period (while the child is alone), and the
post-challenge or resolution period; these time points were
identified from the videotapes. A repeated measure ANOVA
using Proc Mixed in SAS showed no difference on activity
counts per minute by task F'(2,221) = .36,p = .697 and no
differences among the three periods, F'(2,221) = .32,p =
.728. Also a test for interaction between tasks and periods
was not statistically significant, F'(4,221) = 1.69,p = .154.
The lack of difference between the activity counts over these
periods does not imply that the emotional challenge has little
effect on the amount of activity, since the children were asked
to stay seated during this time.

C. Linear system models

We assume linear system models as approximations to the
full nonlinear model around an operating condition. Using the
cortisol and activity time traces as discussed above, we use
standard system identification techniques to fit simple first,
second, third, and fourth order ARMAX models for each child
for each task. For example, the second-order model is:

y(k) = ary(k — 1) + agy(k — 2) + bru(k — 1) + bau(k — 2)
4)

In [18], we considered only the cortisol response to a
stressful input, modeled as an impulse. The linear model of
equation (4) was used. We demonstrated that, for the cortisol
trace as output, an impulse input resulted in a better overall
fit than no input. We also discussed the expected stability of
the cortisol response, and chose to use only stable models as
descriptors. In this paper, we also consider activity as another
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Fig. 2. Impulse input only: a “bad fit” for U15, computer task.

manifestation of emotional response. Since it is unknown
whether activity “causes” cortisol to increase, or cortisol
“causes” activity to increase, we consider activity, cortisol,
and the stress impulse as different factors that can act in
isolation or in tandem, to produce a response of either activity
or cortisol. The time scales of the cortisol and activity response
are quite different; cortisol has a much slower response and
is sampled at 10-minute intervals; activity behavior reacts
more quickly and is recorded every 15 seconds. The interplay
between these two different time scales has been addressed at
only a very basic level in this preliminary work. Cortisol and
activity are possibly best regarded as two of several outputs
of a complex dynamic system; the models that we build here
can help address the question of the relative phase.
Thus, the possible choices for the model are:

1) A stress input happens at time ¢ = 0, when the partic-
ipants undergo the emotionally challenging task. Since
we are unable to measure exactly what happens during
the stressful event, we model the input as a unit, discrete
impulse: u(k) = 1 for k = 0 and u(k) = 0 for other
values of k. This model assumes that the stress is the
same for all participants, although they may experience
it differently. The output can be either cortisol or activity.

2) The input u(k) is the activity as measured by the Actical
accelerometer, and the output is cortisol.

3) The input u(k) is the cortisol, and the output is activity.

4) There are two inputs, u1(k) and ug(k), corresponding
to the stress and the activity (or stress and cortisol),
with the output being cortisol (or activity). The single-
input model of equation (4) can be extended in a
straightforward manner to get the two-input model.

One consideration is that the impulse input may not be suffi-
ciently rich to allow the system to be identified correctly [19],
but we have been satisfied with the descriptive capabilities of
even these simple models.

We have initial condition measurements at ¢ = —30 and
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Fig. 3. Activity input only: third order is best for U15, computer task.

t = 0, and we expand these to get four initial conditions (every
10 minutes). Of course, these are not independent, but we
use them as the initial conditions in the system identification
algorithm. The expectation is that the cortisol values will
decline towards the baseline as the child arrives at the lab
and goes through the quieting activities during the first half-
hour. Since an 7 order model requires n initial conditions,
we can consider models up to fourth order.

The model-fitting is done as follows (for the second order
model example). First, we write out all of the equations. The
initial conditions will be y(0) and y(—1).

y(1) = a1y(0) + az2y(—1) + byu(0) + bau(-1)
y(2) = a1y(1) + a2y(0) + byu(1) + bau(0)

Y(9) = a1y(8) + a2y(7) + bru(8) + bau(7)

Then, all the data are put together into a matrix as follows:

v Tw0) y(-1) u(0) w(-1)] [a,

y(2) y(1)  y(0)  w(d) wO) | |g4

Y=1.1=1". by

y©)]  |v® wm uw®)  ww | L
=T0O

To solve for the unknowns in ©, we simply take the pseudo-
inverse of ¥ by multiplying both sides by ¥’ then inverting:

vy = vTwe
() loTy = e

Once we have the parameters © = [a1 a2 by bQ}T, we
can simulate the model of equation (4) to get Ymodel- BY
definition, the model will result in the smallest possible RMS
error between the simulated data and the actual data in Y and
W, with the given input (either an impulse or the activity).
Extending this analysis to the two-input case be done in a
straightforward manner.
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Fig. 4. Both inputs: second order is best for C24, prize task.

D. Defining the “best” model fit

For each child, for each task, we fit first, second, third, and
fourth order models to the data. By definition, the fourth order
model should give the lowest RMS error, since the lower-order
models are special cases of the fourth order. However, we
would like to choose the “best” model as the simplest (e.g.,
lowest order) model that adequately captures the key features
of the time response.

We have defined three cases for choosing the best model:

1) If all of the models are unstable, or the RMS error for
every stable model is greater than 50% of the average
output (cortisol or activity) value (for that data set), then
we define a “bad fit.”

2) If at least one of the models is stable, then we consider
all of the stable models. If the minimum RMS error
is greater than 0.005 but less than 50% of the average
output value, then we choose the one that has the
minimum RMS error.

3) If the minimum RMS error is less than 0.005, then we
choose the smallest model order that has RMS error is
less than 0.005.

The value 0.005 was chosen to reflect the fact that the cor-
tisol measurements are only accurate to 5%; RMS errors that
are smaller than the measurement error are not meaningful.

Case 1 is illustrated in Figure 2, for participant U15 with
only the stress impulse input. The average cortisol value is
0.067 and the RMS error for the only stable model is greater
than 50% of that. Case 2 is illustrated in Figure 3, also
for participant U15, but with only Actical input (shown in
Figure 5(a)). The first three models are stable, but none have
an RMS error less than 0.005, so the stable model with the
lowest error (third) is chosen. Case 3 is illustrated in Figure 4,
where the activity input is shown in Figure 5(b). The second
order model is chosen since the error is below the threshold.

Another example of comparing the different models is
shown in Figure 6. All of the best-fit models are second order,

Activity input U15 computer task Activity input C24 prize task
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Fig. 5. Activity input for (a) U15, computer task and (b) C24, prize task.
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Fig. 6. For participant UO3, envelope task, the best models for each input
type are shown, along with their RMS errors.

as indicated in the title of each plot. The combination of the
two inputs gives the overall lowest RMS error.

E. Summary of model fitting results

Table I shows a summary comparison of “best fit” models,
with each combination of input and output and model orders.
There are 59 participants over 3 days, thus 177 total models
(for each input/output combination). The average RMS error
does not include those designated as a “bad fit.” From the table,
it can be seen that cortisol is a better output than activity, and
that assuming some input gives a better fit than assuming no
input (a simple auto-regressive model).

TABLE I

SUMMARY COMPARISON OF THE DIFFERENT MODELING CHOICES.
Input Output | Ist 2nd 3rd 4th Bad | RMS
None Cort. 20 21 33 68 35 | 0.0155
Impulse Cort. 28 34 44 48 23 | 0.00995
Act. Cort. 32 37 62 30 16 | 0.0113
Act. and Imp. Cort. 35 36 25 65 16 | 0.00322
None Act. 5 1 2 9 160 | 0.0155
Impulse Act. 9 1 12 41 114 | 0.00821
Cort. Act. 7 5 13 34 118 | 0.0177
Cort. and Imp.  Act. 12 16 36 38 75 | 0.00602




Interestingly, despite the fact that the impulse model was
an approximation of the emotional response to the stressful
task and the activity was directly measured and scaled ap-
propriately, there were no significant differences in the order
of model needed to capture the data for these single input
models. However, models with motor activity and combined
models incorporating both an emotional impulse and measured
motor activity resulted in more lower order models as “best
fits” x2 = 22.5, p < .001, with fewer unstable models (16
vs. 23 and 35 for impulse and no input models, respectively)
and most 1st or 2nd order models (69 and 71 vs. 62 and 41)
appearing as the “best fit” for the data.

I'V. DISCUSSION AND FUTURE WORK

This paper represents an initial step towards building dy-
namic systems models of emotional reactivity and regulation.
Linear systems models were used to represent the dynamic
relationships between measured values of cortisol and activity
response during and after a stressful task. We considered that
cortisol and activity could be either inputs or outputs to the
linear systems models, and showed that the better fits are
obtained with a cortisol output than with an activity output.
Our findings are novel in that they demonstrate a clear link
between regular, daily motor activity and cortisol release in
a normative pre-school sample. Moreover, the models that
resulted from these analyses were better than those that only
assumed an impulse input at the time of an emotion challenge
task. Thus, our findings also suggest some straightforward
directions in modeling the complexities inherent in stress
responding and emotional reactivity more generally.

The dynamic systems model can represent the cortisol
time trace in a compact fashion, and can be used to build
statistical relationships between the model parameters and
other variables of interest (such as survey responses). The
model parameters can be used in addition to, or instead
of, traditional cortisol indicators such as peak value, peak
time, or area under the curve, and could be of particular use
in predicting individual differences in emotional responding.
These statistical uses will be examined in future work.

We are currently working on expanding our data set to
include imputed data, extracting the activity data for all of the
participants, and analyzing the predictive capabilities of the
models. In parallel, we are coding the videotapes, and from
these codes, extracting discrete event models of the exhib-
ited emotional and behavioral activities. We plan to consider
these discrete-event traces as additional inputs and/or outputs
to/from the discrete-time models. Finally, statistical models
are being built to relate the dynamic systems models, and
summary measures of them, with more traditional measures of
emotional regulation, to incorporate culture to the models, and
to better understand the underlying physiological processes.
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