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Abstract—A key question in neuroscience is how memorization
and association are supported by the mammalian cortex. One
possible model, proposed by Valiant[10], uses sparse encodings
in a sparse random graph, but the composability of operations
in this model (e.g. an association triggering another association)
has not previously been evaluated. We evaluate composability
by measuring the size of “items” produced by memorization
and the propagation of signals through the “circuits” created by
memorization and association. While the association operation
is sound, the memorization operation produces “items” with
unstable size and produces circuits that are extremely sensitive to
noise. We therefore amend the model, introducing an association
stage into memorization. The amended model preserves and
strengthens the sparse encoding hypothesis and invites further
characterization of properties such as capacity and interference.

I. I NTRODUCTION

A key question in neuroscience is how memorization and
association are supported by the mammalian cortex. The
question is complicated by the measured number, degree, and
synaptic strength of cortical neurons. Neurons appear to be
sparsely connected: while the number of neurons in mouse
cortex is estimated to be1.6×10

7 and the number of neurons
in human cortex is estimated to be approximately10

10[4],
their degree—the number of neurons with which each neuron
synapses—is estimated to be much smaller, approximately
7800 in mouse cortex and 24,000-80,000 in human cortex[1].
At the same time, the average strength of synapses appears to
be quite weak, with each estimated to effectively contribute a
fraction in the range 0.003 to 0.2 of the firing threshold[1].
While some significantly stronger synapses have been recorded
([9], [7], [2]), weak synapses appear to predominate and some
neural systems may be dependent entirely on weak synapses.

A model of memorization and association, using only weak
synapses and consistent with these parameters, has been pro-
posed by Valiant[10]. In this model, interconnecting cortical
neurons are modelled as a sparse random graph and “items”
to be manipulated are represented as sparse subsets of graph
nodes (decisions consistent with a long history of work on
neural networks, including [3], [6], [5], [1], [8], and many
others). In this model, an “item” represented by a set of graph
nodes is considered to be “recognized” when at least half of
the nodes in the set are firing, so nodes may be used in more
than one item, so long as the overlap between items is small.

Fig. 1. The sparse encoding model proposed in [10] models a portion
of cortex as a sparse random graph with directed edges, whereeach edge
has a weight representing its synaptic strength and each node fires when the
incoming edges from firing nodes sum to a high enough weight.

Memorization is the joining of two items,A andB, to create a
new itemC, such thatC is recognized if and only if both and
A andB are recognized (an “AND” relationship). Association
is the linking of two items,D andE, such that wheneverD
is recognized,E is recognized also (an “IF” relationship). In
neither case should there be side-effects or interference from
other memorization or association relationships. The original
proposal includes two algorithms, JOIN and LINK, that create
“circuits” implementing memorization and association, respec-
tively.

While these algorithms and the “circuits” they produce are
evaluated in isolation in the original proposal, their com-
position (e.g. an association triggering another association)
has not previously been evaluated. We empirically evaluate
the model’s performance on two aspects of composition: the
variation of item size during repeated memorization and the
impact of noise on signals propagating through memorization
and association “circuits.” The evaluation shows that associ-
ation is sound, but that memorization is extremely sensitive
to size variation during construction and produces circuits in
which signals degrade badly in the presence of any noise. We
therefore amend the model to abolish these sensitivities by



incorporating an association stage into memorization.

II. M EMORIZATION AND ASSOCIATION IN SPARSE

RANDOM GRAPHS

The sparse encoding model proposed by Valiant[10] consists
of four modular components: a model of cortex as a general
or bipartite sparse random graph, representation of “items” as
disjoint or shared sparse sets of graph nodes, one-step and
two-step JOIN algorithms that create composite items, and a
LINK algorithm that associates one item with another. This
section reviews the model from [10], noting which variants
are used and our implementation decisions where the original
model is underspecified.

A portion of cortex—either a single brain region or several
interconnected regions—is modelled as a sparse random graph.
The graph may be a general graph withn nodes (Figure 1)
or a bipartite graph where each component hasn nodes. Each
node has an expected degreed and has probabilityp = d/n of
connecting to each other node in the network with a directed
edge. At highn and low p, the general graph and bipartite
graph behave similarly, so we will treat only the case of a
general graph, for simplicity.

Each edge has a weight associated with it, representing
synaptic strength. Each graph node is either firing or inactive,
and contains a simple finite state machine that determines its
behavior. The level of stimulus at a node is equal to the sum
of weights on incoming edges. When this stimulus exceeds a
threshold (normalized to 1), the node fires unless its current
state suppresses firing. Memorization and association use dif-
ferent base synaptic strengths,1/km and1/ka. For pragmatic
reasons, our empirical evaluations use one population of edges
with multiple weights rather than multiple populations of
edges, but these are equivalent because only one set is ever in
use at any time. Timing is left vague in [10], so we calculate
firing in steps, where the stimulus at a node in a given step
comes from the nodes firing in the previous step.

Memorization and association operate on “items,” which
might represent concepts or other fragments of mental state.
An item is represented by a set ofr graph nodes, where
r << n, and we assume the existence of a mechanism that
creates items on demand by selecting a random set of nodes.
The representation of items may be either disjoint, meaning
that each node is included in zero or one items, or shared,
meaning that each node may be included in many items.
In this paper, we consider only the shared representation,
because many more items can be allocated than in the disjoint
representation. The disjoint representation can only allocate
a maximum of n/d items, and memorization fails when
only a small fraction of that limit has been allocated (due
to the sensitivity discussed in the next section). The shared
representation also has the advantage of providing a possible
explanation for the surprising ease with which stimuli can be
found that produce selective responses in individual neurons:
if a neuron participates in many items, it is much easier to
find some item that causes it to respond.
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Fig. 2. The JOIN algorithm uses existing itemsA andB to create an itemC
that is recognized if and only ifA andB are recognized. In one-step JOIN,
A and B are triggered to fire simultaneously and C is the nodes they stimulate
to fire. Two-step, using twice the edge weight, first triggersA, moving nodes
that would fire to an intermediate state, then triggers B to fire and C is the
intermediate-state nodes that fire.
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Fig. 3. The LINK algorithm connects existing itemsD andE so that ifD is
recognized, thenE is recognized as well.D is triggered to fire and the firing
is propagated for two steps. In the first step, all edges have weight1/ka, and
in the second step all edges initially have weight0. LINK works by raising
the second-step weight to1/ka on edges that arrive atE from firing nodes.

If a large enough fraction of an item’s nodes are firing,
then the item is considered to be “recognized;” if few are
firing then the item is considered to be “not recognized.”
In the original model, the threshold is fixed at 50%; in this
paper we generalize this by allowing an “invalid” range that
separates “recognized” and “not recognized” states, just as
digital circuits have an invalid range of voltages between those
that represent binary “1” and those that represent binary “0.”

Memorization is implemented using the JOIN algorithm,
which uses existing itemsA and B to create a new itemC
that is recognized if and only ifA and B are recognized.
JOIN comes in one-step and two-step variants (we ignore the
disjoint representation variants for JOIN and LINK), both of
which work by triggeringA andB to fire, then identifyingC
as the set of nodes that are well stimulated by bothA andB
(Figure 2). In both cases, all edges have weight1/km, which
is set to giveC an expected size ofr nodes. The edge weights

are never adjusted. One-step JOIN uses akm twice the size
of two-step JOIN. In one-step JOIN,A and B are triggered
simultaneously, andC is the set of nodes that fire. In two-
step JOIN, firstA is triggered, and all nodes that should fire
instead advance to an intermediate state. Next,B is triggered,
only nodes in the intermediate state are allowed to fire, andC
is the set of nodes that do fire. Execution of these “circuits”is
the same as construction, but using the current firing level for
A andB rather than triggering them, and looking atC for the
outcome. Two important notes: first a symbol cannot be joined
with itself, and second, due the statistics of the random graph,
executing more than one JOIN at the same time is likely to
cause every node in the network to fire.

Association is implemented by the LINK algorithm, which
connects existing itemsD and E, so that ifD is recognized
thenE is recognized as well. LINK executes in two steps, and
does adjust weights (Figure 3). In the first step,D is triggered
to fire and every edge has weight1/ka. The parameterka

is set so that at the second step nearly all nodes will have at
leastka edges incoming from firing nodes. The weights for the
second step are all initially0, but LINK raises them to1/ka

on edges that arrive atE from firing nodes. Thus, whenD is
recognized, precisely those items that have been connectedto
it by LINK will be recognized two steps later.

III. SENSITIVITY OF MEMORIZATION TO ITEM SIZE

Chained memorization circuits are an area of concern for
composition because the size of the new item created by
JOIN depends on the size of the two items being joined,
yet also varies due to the randomness of the graph. The
original proposal notes that this variation can be expectedto
be on the order of

√
r, which is only a small variation in

size. When items produced by JOIN are themselves used in
a memorization, however, even a small variation may have a
large impact. The size of the item created is determined by the
size of the upper tail of a random distribution, and the amount
of the tail above the firing threshold is extremely sensitiveto
variations in the mean of the distribution.

We demonstrate the importance of this effect by evaluating
the degree of sensitivity empirically. Both one-step JOIN and
two-step JOIN are evaluated, using parameters from [10]:n =

100, 000, d = 512, and the corresponding pairskm = 32, r =

2134 for one-step JOIN andkm = 16, r = 2338 for two-step
JOIN. Figure 4 shows the size of the new item created from
a pair of items ranging from0.9r to 1.1r in steps of0.01r,
with 100 samples for each size (10 times on 10 networks).
Small variations in the size of the initial items are greatly
amplified in the size of the item created by the JOIN. With
these parameters, both one-step and two-step JOIN amplify
small size variations by approximately one order of magnitude.

The high sensitivity of JOIN to the size of the initial items
means that chaining together even a small number of JOIN
operations is unstable, and that even a few iterations leadsto
representations that contain either zero nodes or nearly the
entire graph. Figure 5 shows a three-layer network of JOIN
operations, creating an itemAH that only fires when all eight
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Fig. 4. The number of nodes in items created by the JOIN operation is
extremely sensitive to variations in the number of nodes in the items being
compounded. Using network parameters from [10], both one-step and two-
step JOIN amplify small variations by approximately one order of magnitude.
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Fig. 5. The size sensitivity problem of JOIN is demonstratedby three layers
of chained JOIN operations, compounding items A through H toform an item
AH that fires only when all eight inputs are firing.

of the initial itemsA throughH fire. We evaluate this with
the same parameters as before, settingr for the initial items
to the idealsr = 2134 for one-step JOIN,r = 2338 for two-
step JOIN, gathering 100 data points for each (10 times on 10
networks). Results are shown in Figure 6. Since two-step JOIN
always resulted inAH growing to cover the whole network,
we also test two-step join withr = 2314—one percent less
nodes in the initial items—andAH always collapses in size.

Thus, although the JOIN operation is viable in isolation, its
sensitivity to the size of the items to be joined makes chaining
JOIN operations impossible, at least as originally specified.

IV. N OISE SENSITIVITY IN PROPAGATING SIGNALS

The composability of “circuits” in the sparse encoding
model can be evaluated using the notion ofstatic discipline
from digital circuit design. Transfer curves are measured
for JOIN and LINK circuits, determining how the fraction
of output nodes firing varies with respect to the fraction
of input nodes firing. These transfer curves determine the
composability of signals: if appropriate noise margins canbe
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(b) Two-step JOIN chain

Fig. 6. The size of items produced by JOIN operations explodes or collapses
over the three-layer JOIN chain shown in Figure 5.

chosen, then signals will be restored as they pass through
circuits and noise poses no limit on composability. Otherwise,
the circuits are sensitive to noise and signals can be expected
to degrade, perhaps rapidly, as they pass through circuits.

In digital circuit design, devices are shown to be composable
by establishing a static discipline—a relationship between
input and output voltages that ensures that output voltagesare
closer to ideal “0” and “1” values than input voltages. More
formally, the static discipline for a family of devices is a set
of voltages levels,VOL < VIL < VIH < VOH . When device
obeys the static discipline, we are guaranteed that if all input
voltagesVi are below the low input thresholdVi ≤ VIL or
above the high input thresholdVi ≥ VIH , then the output of
the device will be belowVOL if the output is a “0” and above
VOH if it is a “1.” In other words, the standards for the digital
values “0” and “1” are more stringent for outputs than for
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Fig. 7. Transfer curves showing the envelope of fraction of output nodes
firing for 10 LINK circuits as the fraction of input nodes firing is varied.
The flat top and bottom of the curve indicate that good noise margins can be
established.

inputs.
This restoration of voltages toward the ideal damps the

effect of noise at each stage of a circuit, allowing digital
devices to be composed without bound. The farther the input
thresholds are from output thresholds, the greater the noise
margin—the amount of noise that can be tolerated at each
stage of the circuit.

The composability of JOIN and LINK circuits can be
evaluated by a similar method, since items have the boolean
values “recognized” and “not recognized,” which may be
interpreted as binary “1” and “0” respectively. The fraction
f of an item’s nodes that are firing plays the part of voltage,
with no firing the ideal “0” and all firing the ideal “1.”

For each device, we measure its transfer curve by varying
the fraction of inputs firing from 0 to 1 in steps of 0.01, using
the parametersn = 100, 000, d = 512, r = 2134, ka = 16 and
km = 32 for one-step JOIN,km = 16 for two-step JOIN (from
[10]). For JOIN, we measure both the simultaneous variation
of inputs and the variation of one input while the other is held
high. Each transfer curve shows the envelope of behavior for
10 devices, each created on a different network. LINK circuits
have good noise margins (Figure 7), but no upper noise margin
can be established for JOIN (Figure 8): even minimal noise
will result in significant signal degradation.

V. A MENDED MODEL

Although the original model of memorization is not viable
under composition, two small modifications make it so. The
first is to add an association stage to the end of a memorization
circuit. This removes the size instability problem and steepens
the slope of the transfer curve. The second is to lower the firing
thresholdskm and ka slightly, shifting the transfer curve to
provide an adequate noise threshold for firing items.
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Fig. 8. Transfer curves showing the envelope of fraction of output nodes
firing for 10 JOIN circuits as the fraction of input nodes firing is varied. No
upper noise margin can be established, so even minimal noisewill result in
significant signal degradation.

The new JOIN-LINK algorithm is simply a composition
of the existing one-step JOIN and LINK algorithms. Given
existing items A and B, first allocate a new random item C
for the output. Use a one-step JOIN on A and B, creating an
intermediate itemγ, then LINK the itemγ to C. The resulting
circuit fires C if and only if both A and B are firing, as desired
for memorization, though it takes three steps of propagating
firings rather than one to execute. Because C is allocated
independently from A and B, the JOIN-LINK algorithm does
not suffer from instability in encoding size.

We measure transfer curves for JOIN-LINK and LINK as
before, using the samen = 100, 000, r = 2134, andd = 512,
and lowered firing thresholdskm = 30 and ka = 13. The
results (Figure 9) support a static discipline offIL = 0.5,
fOL = 0.01, fIH = 0.91, andfOH = 0.99, for a noise margin
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Fig. 9. Measured transfer curve envelopes for the amended model, usingn =

100, 000, r = 2134, d = 512, km = 30 andka = 13, show composability,
because a static discipline can be established withfIL = 0.5, fOL = 0.01,
fIH = 0.91, andfOH = 0.99, for a noise margin of 8%.

of 8%. The amended model thus provides both stable encoding
size and good noise margins, allowing unlimited composition
with respect to construction and signal propagation.

VI. CONTRIBUTIONS

Empirical evaluation shows that the memorization opera-
tions in the sparse encoding model proposed by Valiant are not
composable: the size of items is sensitive to small variations,
and signals propagating through memorization circuits degrade
badly in the presence of even minimal noise. We therefore
present an amended model, adding an association state to
memorization but preserving the basic premises of the sparse
encoding model. The amended model produces circuits that
are not limited in their composition by the factors examined
in this paper. We have thus filled in an important gap in the
sparse encoding hypothesis.

Composition issues are not limited to the two we have ad-
dressed in this paper, and this work invites more investigation
along similar lines. Particularly pressing are questions about
the capacity of a sparse random graph to encode items and re-
lationships and about the degree to which propagating signals
interfere with one another. Preliminary investigation suggests
that the original and amended model will both perform badly
in these areas, but that once again a careful understanding of
the problems will suggest small modifications to the model
that correct this deficiency.

Ultimately, of course, the test for the sparse encoding model
is comparison with actual mammalian cortex. However, there
is not yet conclusive evidence to confirm or deny the two
most fundamental assumptions of the model—sparse random
graph structure and the importance of weak synapses. If the
biological data does in the end support the sparse encoding
model, the implications may be profound, for the digital
computation in the model helps to explain how low-level
neural activity might produce apparently “symbolic” higher-
level cognition.
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