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Abstract—Speech understanding requires the ability to parse
spoken utterances into words. But this ability is not innate
and needs to be developed by infants within the first years
of their life. So far almost all computational speech processing
systems neglected this bootstrapping process. Here we propose
a model for early infant word learning embedded into a layered
architecture comprising phone, phonotactics and syllable learn-
ing. Our model uses raw acoustic speech as input and aims to
learn the structure of speech unsupervised on different levels
of granularity.

We present first experiments which evaluate our model on
speech corpora that have some of the properties of infant-
directed speech. To further motivate our approach we outline
how the proposed model integrates into an embodied multi-
modal learning and interaction framework running on Honda’s
ASIMO robot.

Index Terms—Language Acquisition, Multimodal Integration,
Robotics, Speech Recognition, Statistical Language Modeling

I. INTRODUCTION

Most computational models for word acquisition suffer

from two major weaknesses. First, they tackle the problem

of speech acquisition in the symbolic domain only, although

it is not clear how and whether these approaches can be

generalized to the acoustic domain. Second, most models

rely on some kind of innate representation, which is mostly

at the level of syllables. But because syllables depend

strongly on the language to be learned, it is not clear how

these approaches can be extended to become valid models

for language acquisition as observed in infants.

To our best knowledge existing computational models

offer only very limited explanation for the marvelous

process of speech acquisition observed in infants. One of the

most important, but in the literature often neglected ability

required for word acquisition, is the segmentation of speech

into words (c.f. c.f. [1]). There is evidence, that this ability

allows already infants as young as 8 months to bootstrap

new words based on the principle of subtraction (c.f. [2]).

The idea of this work is to bootstrap a word representation

based on the statistics of raw acoustic input speech only.

Following Occam’s razor we first evaluated the most

straightforward word acquisition approach, which is to use

utterances of word length to bootstrap new words and to

apply the principle of subtraction to learn also words which

do not appear as isolated utterances (c.f. [3]). Unfortunately

this approach failed, because length is not a reliable cue

for word segmentation. Therefore word learning needs

to be modeled using more elaborate methods like metric

segmentation strategies, transitional probabilistic models, or

the unique stress constraint principle, which are believed to

play a role in the early infant lexical word learning (c.f.

[4], [5]). All these principles depend on a representation

of the speech input in terms of syllables. But because

syllables strongly depend on the language they cannot

be assumed to be innate. Although there are promising

results for syllable acquisition on symbolic corpora as

described in [6], it remains a challenging task to bootstrap

a syllable representation from raw acoustic speech, because

only very few syllables appear as isolated utterances in

spoken language. However, there is broad agreement that

phonotactics, that are the rules which restrict how phones

can be assembled to syllables, play an important role for

syllable learning. In contrast to phonemes we consider

phones to be acoustically distinguishable units without any

relation to meaning.

Therefore, in order to actually build a system which

is able to learn words based on these above mentioned

principles, we propose a three-layered framework for speech

acquisition: First, it learns a phone-representation including a

phonotactic model. Second, based on the syllabic constraints

implied by these learned phonotactics and input speech

obeying some properties of infant-directed speech, a syllable

representation becomes learned. Finally, our framework

acquires a word lexicon based on the above mentioned word

acquisition principles which are believed to play a critical

role in early-infant language development. Technically,

our system can be defined as a cascade of HMM-based

speech unit spotting instances which rely on incomplete

speech unit representations on phone, syllable and word level.

The remainder of this work is organized as follows. In

section II we give an overview of our framework. Subse-
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Fig. 1. The proposed three-layered architecture for speech acquisition.
As indicated by the visualization all layers have a very similar structure
consisting of a pool of unit-models, a statistical grammar (LM), and a
recognizer which detects learned units in the incoming feature stream.

quently in section III we describe in more detail the used

phone acquisition approach. Syllable learning and a set of

regulatory metrics necessary to keep the syllable part of our

system in homeostasis are defined in section IV. In Section

V we describe the details of our lexical word acquisition

method and possible extensions. The used evaluation metrics,

the different kinds of evaluation scenarios and first results are

subsequently reviewed in section VI. There, we also outline

how our approach embeds into an embodied multi-modal

learning and interaction framework. Finally, we discuss ideas

for further improvements in section VII.

II. SYSTEM ARCHITECTURE

The proposed system architecture is shown in figure 1.

Three interconnected layers are used to learn the phone-,

the syllable- and finally the word representation of the input

language. Initially all representations are empty. Processing

and learning are organized in a bottom-up manner. The

learning of phones and phonotactics completely priors

syllable and word acquisition which allows to neglect some

stability and plasticity issues. In contrast syllables and words

are acquired incrementally in parallel.

Each layer comprises a pool of models, a detector and

a statistical speech unit grammar. Because the speech

units are modeled as Hidden Markov Models we can use

state of the art speech recognition methods for detection.

Being learned in one single clustering step, phones can

be directly recognized with a phonotactically constrained

Viterbi-decoder (c.f. [7]). In contrast, syllable and word

representation are learned incrementally. Viterbi-decoding

is not directly applicable in such a case, and we use a

keyword-spotter to detect already learned syllables/words.

Thereby the next lower level representation is used as

background (aka. world-, filler-, OOV-) model.

Although not shown in figure 1 for sake of simplicity, input

speech is framed by a voice activity detector as described

in [8] into segments. These contain utterances of different

complexity starting from isolated mono-syllabic words up to

complex utterances comprising many poly-syllabic words.

Such segments become converted to mel-frequency cepstrum

coefficients including energy, and their first and second

time derivatives. Resulting features define the input to the

phone clustering module, the phone recognizer and to the

syllable spotter. Word acquisition and spotting are based

solely on the results provided by the syllable spotter, which

is a discrete, initially incomplete stream of syllable symbols.

In contrast to other approaches on language acquisition, we

make no assumptions on the language to be learned, except

the idea that speech is organized in terms of syllables.

Therefore, the first step to bootstrap a complex speech

representation is to learn some basic units of speech: in our

case, phones which we think to be speech segments that

possess distinct physical and perceptual properties. Because

the set of possible phones in a language is extremely small

compared to the number of syllables or words we attempt

to find such a phone representation using an unsupervised

clustering approach.

III. PHONE LEARNING

A phone representation is crucial to make our proposed

acquisition model operative: firstly, it allows the conversion

of speech into phone symbol sequences, which is a

prerequisite to learn the phonotactics of language. Secondly,

syllable models can be created by concatenation of

phones HMMs as indicated in fig. 1. As shown in fig.

2 the syllable spotter requires a phone representation as

background model. Finally, a phone representation allows

us to normalize acoustic scores while recognizing syllables

as described in [9].

To bootstrap a phone representation we adopted the ap-

proach proposed by [10]: First, a few minutes of input speech

are accumulated to give a sufficiently large training sample.

Single state HMMs with mixtures of Gaussians including

8 component densities as output probability distribution

functions (OPDF) are estimated using k-means. Thereby a

transition matrix between the different single-state HMMs

is estimated. To obtain the initial-phone models, a Monte-

Carlo-sampling governed by these transition probabilities is

used. This gives us the most frequent state-sequences. The

N most frequent state sequences are concatenated to 3-

state phone-models with Bakis-topology. These initial phone

models become further refined using the above mentioned

Baum-Welch training. Additionally, the number of required

phones N is optimized based on the Akaike information

criterion as proposed in [11].



�������� &�� '

(����
�&��
��	��

"��	�����


���������	
��

����

���������&���'

���������&����)

���������&����*�+

,

����������	���
�����

��	�	������
��������	
��

�����
���������

"��	�����


Fig. 2. The syllable spotter implementation. The phone model is used as
filler model and to normalize acoustic scores. Learned phonotactics further
constrain the Viterbi decoding.

A. Phonotactic modeling
Phonotactics refer to the rules that govern the structure

of syllables in a particular language. Given a phone

representation, a phonotactic model can only be estimated

from the initial and final parts of recognized phone

sequences. This is because without an explicit syllable

model it is not possible to induce further phonotactically

meaningful training segments than the initial phone-symbols

of the syllable at utterance start and the coda phone-symbols

of the syllable at the utterance end.

The probability for a syllable change is modeled by

combining two N-Gram models for the syllable initial

PSI and final PSF respectively. Thereby PSI(X) gives

the probability that a phone-sequence X starts with a

syllable (and vice versa for PSF ). Both are trained using the

initial/final phones sequences of the training utterances only.

The probability for a syllable change after a phone symbol

k in a sequence of phone-symbols X1:N comprising N
phones is computed as the product of as PSI and final PSF

by splitting the argument phone sequence after phone k:

P (k|X1:N ) = PSF (X1:k) · PSI(Xk+1:N ) (1)

The context size of the both N-Gram models was chosen

to be 3 which we assume to be an appropriate trade-off

between discriminative power, trainability and applicabil-

ity given the task to learn syllable structure statistics. To

interpolate unobserved phone-sequence probabilities due to

insufficient training-samples a Katz-smoothing was used (c.f.

[12]).

IV. SYLLABLE ACQUISITION

Initially the syllable representation does not contain

any models. Incoming speech is analyzed solely by the

phone-recognizer and the voice activity detector. Inspired

by the properties of infant-directed speech uttered by adults

to ease the word model bootstrapping of their children, we

assume the input speech to occasionally contain isolated

monosyllabic words. These allow to bootstrap a first set of

syllable models. In contrast to our previous work described

in [3] training segments for syllable learning are now

restricted to mono-syllabic segments by performing a simple

hypothesis test about the number of syllables contained in a

segment based on the previously learned phonotactic model.

These segments are used to trigger the syllable acquisition.

As soon as a new syllable model is acquired, it becomes

integrated into the syllable spotter depicted in fig. 2.

Spotting results can be further employed to give new

training segments for bootstrapping: Inspired by the

principle of subtraction as described in [13] or [2] these

results are fused with speech-segments to give additional

training segments: Given an already acquired model for the

syllable [si] and a sequence of syllables [a] [si] [mo] as

speech input, the syllable spotter will be able to detect [si]
within this sequence. That allows to subtract the spotted

syllable-segment from the framing voice activity segment

which gives two additional training segments for [a] and

[mo].

Triggered by a syllable training segment the unsupervised

clustering method to syllable bootstrapping proceeds as fol-

lows: A new training segment X will be processed in a

twofold way. First the model λ∗ which is most likely to

explain the given segment is determined by

λ∗ = argmax
λ:M

P (X|λ) (2)

Thereby P (X|λ) denotes the data likelihood. For the

second step we assume the histogram of former training to be

approximated by a probability distribution with the density

fλ∗(p). The corresponding cumulative distribution function

Fλ∗ is than used to map P (X|λ∗):

ν(λ∗, X) = Fλ∗(P (X|λ∗)) =
P (X|λ∗)∫

−∞
fλ∗(p)dp (3)

Given decision threshold θ two cases have to be considered:

1) ν(λ∗, X) ≥ θ : X seems to be sufficiently new. The

best matching sequence of phone-models will give an

initialization model for the new syllable model to be

created. This case applies also if the the syllable model

pool is still empty.

2) ν(λ∗, X) < θ : The model λ∗ seems to be appropriate

to model the current segment X , which therefore will

be used to improve/reestimate λ∗ using MAP-training.

After a segment has been processed fλupdate
(p) becomes

incrementally updated with P (X|λupdate). Given that a

specific amount of training segments was used to estimate



the parameters of a syllable model, it is tagged as stable.

Using such a bootstrapping approach syllables are modeled

incrementally based on their appearance in time.

A. Regulation

Spotted segments are used to update metrics commonly

used to score unsupervised learning tasks: completeness Γ,

orthogonality η and stability ψ. Applied to the problem of

speech acquisition we realized these regularization terms as

follows:

Model spotting coverage Γ(t) measures the completeness

of the representation at a given time. It is defined as the ratio

of speech covered by at least one of the detected syllable-

segments to the overall amount of speech.

Model coactivity , measures the mutual dependence be-

tween all syllable models for in a given time. Optimally sylla-

ble models are orthogonal with respect to their discriminative

power, i.e. only one model is active at a time. It is measured

pairwise in terms of correlated keyword spotting activity. For

two models i and j the model coactivity is denoted with

η(λi, λj , t).
Pool stability ψ(t) is defined as the ratio of stable models

to the non stable models.

Based on these terms the acquisition problem can be

reformulated as an optimization problem to provide a unified

framework for speech acquisition:

Γ + ψ − |η| → max! (4)

Thereby | • | denotes a common matrix norm. Intuitively

this regularization function attempts to establish homeostasis

as soon as the syllable representation allows to completely

model the input speech. Because it is not possible to find

a closed from solution, we propose two heuristics which

attempt to maximize this criterion function.

(I) A first approach to limit the pool growth is chosen to

be based on pool stability. New models are created only if

ψ(t) > Γ(t) (5)

Otherwise the best pool model is updated. Using this

heuristic the creation of new models is eased if speech

coverage is low. Vice versa this heuristic prevents the

creation of new models if the current AM is already able to

model the speech input sufficiently.

(II) Whereas the default acquisition loop assumes

ν(λ∗, X) to be greater than a fixed threshold it might be more

appropriate to use an adaptive threshold. Such a threshold can

be chosen by:

θ = θ0 · (1 + β · ψ) (6)

This heuristic is inspired by the idea to ease the creation

of new models if the AM is sufficiently stable. Vice versa

low stability prevents the creation of new models. Thereby

β defines a weighting factor.

V. WORD LEARNING

In contrast to syllables and phones, words are modeled as

simple sequences of syllable-symbols. Accordingly the word-

models are discrete HMMs. We propose a lexical acquisition

mechanism which allows to bootstrap a lexicon L. Its input

are sequences of syllable symbols as highlighted in fig. 1.

To exclude noisy models, only speech-segments which are

completely covered by syllable segments are used to learn

new words. Starting with an empty lexicon we combine

algebraic learning (c.f. [4]) with co-occurrence based word

acquisition (c.f. [5]). Given a sequence S = S1S2...SN of

syllables, lexical learning works as follows:

• if(S ∈ L) return, because words are modeled as discrete

symbol sequences, and a syllable sequence which is

already in L does not need to be re-added.

• if(N == 1) add S to L because every isolated syllable

is a word.

• else if(PSLM (S) > Θ) add S to L because the syllables

in S co-occur with such a high probability that it is

reasonable to assume that S is a word.

• else Find the best matching word sequence and apply

the principle of subtraction to compute the residual

segments of S which are not in the lexicon yet. Apply

this algorithm to all residual sequences.

It is clear to us that such an approach is far less powerful

compared to symbolic lexical learning approaches like the

model of Gambell and Yang proposed in [4]. The main

difference lies in the fact that many word segmentation

approaches rely on stress. Here, this is not applicable

because of missing stress information. Unfortunately stress

is highly language dependent, and we’re not aware of

signal processing techniques for language independent stress

detection. However, we think this approach to be a first

valid step in the direction of unsupervised word acquisition.

VI. RESULTS

As depicted in fig. 3 we evaluated the system using a

speech corpus comprising 40 minutes of speech containing

10 different isolated monosyllabic words in arbitrary order.

The regularization module of the syllable bootstrapping

was parameterized with θ = 0.05. Although not shown

phone-learning preceded syllable and word learning as

described above. Phonotactic learning was active but had no

significant influence due to simplified structure of the input

data in this first experiment.

As shown in fig. 3(a) about 15 syllable models were

learned which exceeds the number words in the training
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(a) Training confusion computed after 40 minutes of speech. The
matrix was permuted to maximize its trace. Because of the applied
trace maximization the relation between models and labels becomes
evident.
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(b) Detection confusion Dconf computed after 40 minutes of
speech. The clear matrix trace indicates that the acquired syllable
models are sufficiently discriminative to classify syllables into the
correct categories.
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(c) Speech Coverage Γ of syllables and words. Syllable coverage
quickly approaches 90% whereas word coverage increases slower
due to the more strict assumptions on lexical learning process.
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(d) Syllable pool stability ψ as defined in section IV-A. High
fluctuations are due to active homeostasis which triggers learning
only for stable representations.

Fig. 3. Results for isolated word acquisition

sample. The syllable representation therefore over-represents

the syllable structure of the input language. Compared with

the training confusion matrix in 3(a) the detection confusion

matrix in figure 3(b) lacks of the low orthogonality. Syllable

pool stability and speech coverage converge during the

acquisition process against almost full coverage and stability

as shown in fig. 3(c) and 3(d). Word coverage underperforms

compared with the syllable results, which is probably due to

the restrictive training data pruning as described in section V.

A. Embodied language acquisition

The focus of this work is on developmentally inspired

models for acoustic language acquisition. However, language

acquisition requires embodiment in order to ground acquired

words. Therefore we’ve extended our work presented in

[15] towards a new system for autonomous learning and

interaction (ALIS2) running on Honda’s ASIMO robot (c.f.

[16]). As a first step we’ve integrated the above mentioned

syllable-learning layer into this system, allowing us to

teach new auditory labels online to ASIMO. Because neither

phonotactically constrained syllable-segmentation nor the

word-acquisition algorithm presented in section V are part

of this integration yet, only mono-syllabic words can be

learned until now. Additionally, we biased learning with a

set of predefined semantic classes.

Learning of new words works as follows: Given an

object, the user restricts the system attention to the an

object property which should be labeled (e.g. object height).

Independently of a concrete appearance the system is

able to detect object motion, height, planarity, and object

location relative to the robot’s upper body. In our current

implementation, new words are then taught by providing

a few (2-5) isolated samples for each word. The temporal

grouping these speech segments was given to the system as

an additional cue to ease learning in our first experiments.

Based on the novelty detection mechanism presented in

IV the system is able to distinguish automatically between

already known synonyms and new synonyms. The same

mechanism allows to retrain already learned synonyms

to improve the recognition performance. The system is

language-independent and was successfully used to acquire

mixed-language representations. In our experiments up to

20 words could be learned online solely through contingent



Fig. 4. Interaction between tutor and robot. During evaluation, the tutor
pronounces a previously learned word, which is converted into an expectation
towards the object property associated with it. A presented an object will
lead to a positive feedback (head nodding) if the word is associated to the
referred object property. Otherwise the robot will give a negative feedback
(head shaking), but will keep its expectation until it becomes fulfilled.

verbal and gestural interactions based alone. No offline

computation was necessary and no words were confused

(c.f. [16]).

VII. DISCUSSION

We’ve proposed a model for unsupervised acoustic speech

acquisition inspired by principles which are believed to play

a role in early infant speech acquisition. Although far from

being a complete functional model for this process, our

system seems to be capable to model some of its aspects:

The plasticity of the phone representation vanishes after some

time of habituation to a certain language. As indicated for

infants in [2] the principle of subtraction plays an important

role when learning new words and syllables. After some time

of habituation to the phonotactics to a particular language, our

system is able to bootstrap a stable syllable representation.

We could show that our current system is able to learn

a stable set of syllable and word models independently of

the complexity of the test language. The key concepts of

our approach include a regulation scheme which ensures

asymptotic homeostasis, the combination of unsupervised and

supervised speech processing, and the extension of recent

speech processing techniques which allows to use raw acous-

tic input as input. Our next steps will include a more elaborate

evaluation using semi-synthetic acoustic speech corpora with

defined statistic regularities as input.

For our first experiments we’ve concentrated on a solely

perception driven processing and learning architecture. How-

ever, it is reasonable to believe some kind of top-down

expectation to be beneficial to the performance of the emerg-

ing speech representation. E.g. syllable segments detected

with high confidence could be converted into further training

samples for the learning of phonotactics. Another possibility

would be to use the learned word lexicon to bias the syl-

lable recognition. Such ideas are straightforward to realize.

However, whether and how incomplete and partially unstable

representations on each level can be used to bias more basic

bootstrapping processes will be subject of further research.

Here we restricted our embodied research platform ALIS2

to learn mono-syllabic words only. However, a complete

integration of the proposed language acquisition architecture

as well as a tighter coupling with other perceptual processes

are subject of our ongoing research. Whereas word acquisi-

tion is currently driven by speech coverage as sole criterion

function to be maximized, we’re especially interested in more

sophisticated task-models as driving force behind emerging

language abilities.
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