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Abstract—This paper describes the design of a single learning
network that integrates both object location (“where”) and
object type (“what”), from images of learned objects in natural
complex backgrounds. The in-place learning algorithm is used to
develop the internal representation (including synaptic bottom-
up and top-down weights of every neuron) in the network, such
that every neuron is responsible for the learning of its own
signal processing characteristics within its connected network
environment, through interactions with other neurons in the same
layer. In contrast with the previous fully connected MILN [13],
the cells in each layer are locally connected in the network. Local
analysis is achieved through multi-scale receptive fields, with
increasing sizes of perception from earlier to later layers. The
results of the experiments showed how one type of information
(“where” or “what”) assists the network to suppress irrelevant
information from background (from “where”) or irrelevant
object information (from “what”), so as to give the required
missing information (“where” or “what”) in the motor output.

I. INTRODUCTION

The primate visual pathways have been extensively in-
vestigated in neuroscience: branching primarily from V2,
two primary pathways exist, called the dorsal pathway and
the ventral pathway, respectively. The dorsal stream begins
with V1, through V2, the dorsomedial area and MT (also
known as V5), to the posterior parietal cortex. The control
of attention employment is believed to mostly take place in
the dorsal pathway, sometimes called the “where” pathway.
The ventral stream begins from V1, through V2, V4, and to
the inferior temporal cortex. The ventral stream, also called
the “what” pathway, is mainly associated with the recognition
and identification of visual stimuli.

Attention and recognition are known as a chicken-and-
egg problem. Without attention, recognition cannot do well;
recognition requires attended areas for the further processing.
Without recognition, attention is limited; attention does not
only need bottom-up saliency-based cues, but also top-down
target-dependant signals.

Bottom-up Attention Studies in psychology, physiology,
and neuroscience provided qualitative models for the bottom-
up attention, i.e., attention uses different properties of sensory
inputs, e.g., color, shape, and illuminance to extract saliency.
The first explicit computational model of bottom-up attention
was proposed by Koch & Ullman in 1985 [6], in which a
“saliency map” is used to encode stimuli saliency at every
lactation in the visual scene. More recently, Itti & Koch et

al. 1998 [5] integrated color, intensity, and orientation as
basic features, and extracted intensity information in six scales
for attention control. An active-vision system, called NAVIS
(Neural Active Vision) by Baker et al. 2001, was proposed
to conduct the visual attention selection in a dynamic visual
scene [1].

Top-down Attention Volitional shifts of attention are also
thought to be performed top-down, through spacial defined and
feature-dependant weighting of the various feature maps. The
successful modeling of the “where” pathway, then, involves
the integration of bottom-up and top-down cues, such as to
provide coherent control signals for the focus of attention,
and the interplay between attentional tuning and object recog-
nition. Olshausen et al. 1993 [8] proposed a model of how
visual attention can solve the object-recognition problem of
position and scale invariance. A top-down attention model
was discussed by Tsotsos et al. 1995 [12], who implemented
attention selection using a combination of a bottom-up feature
extraction scheme and a top-down selective tuning scheme.
Mozer et al. 1996 proposed a model called MORSEL [7], to
combine the object recognition and attention, in which the
attention is shown to help recognition. Rao et al. 2004 [9] de-
scribed an approach that allowed a pair of cooperating neural
networks, to estimate object identity and object transforma-
tions, respectively. A top-down, knowledge-based recognition
component, presented by a hierarchical knowledge tree, was
introduced by Schill et al. 2001 [10], where object classes
were defined by several critical points and the corresponding
eye movement commands that maximize the information gain.
Deco & Rolls 2004 [2] presented a model of invariant object
recognition that incorporated feedback biasing of top-down
attentional mechanisms on a hierarchically organized set of
visual cortical areas. A more extreme view is expressed by
the “scanpath theory” of Stark & Choi 1996 [11], in which
the control of eye movements is almost exclusively under top-
down control.

Aforementioned mechanisms of selective visual attention
play significant roles in the biologically plausible architectures
for object recognition (called attention-based recognition) in
the ventral “ stream”. However, it remains an open issue for the
recognition models to integrate neurobiological models con-
cerned with attentional control in the dorsal “where” stream.
As pointed out by Itti & Koch 2001 [4], this integration will,



in particular, account for the increasing efforts on an object-
based spatial attention.

In this paper, we propose a developmental network, called
“Where-What” Network 1 (WWN-1), for a general sensorimo-
tor pathway, such that recognition and attention interact with
each other in a single network. As this is a very challenging
design and understanding task, we concentrate on (1) the
network design issue: how such a network can be designed so
that attention and recognition can assist each other; (2) how to
understand a series of theoretical, conceptual, and algorithmic
issues that arise from such a network. To verify the mecha-
nisms that are required for both design and understanding, in
the results presented, we limit the complexity of “where” and
“what” outputs,

The following technical characteristics required by devel-
opmental learning make such work challenging: (1) Integrate
both bottom-up and top-down attention; (2) Integrate attention-
based recognition and object-based spacial attention interac-
tively; (3) Enable supervised and unsupervised learning in any
order suited for development; (4) Local-to-global invariance
from early to later processing, through multi-scale receptive
fields; (5) In-place learning: each neuron adapts “in-place”
through interactions with its environment and it does not need
an extra dedicated learner (e.g., to compute partial derivatives).
The WWN-1 uses the top-k mechanism to simulate in-place
competition among neurons in the same layer, which is not
in-place per se but is still local and computationally more
efficient as it avoids iterations with a layer. Rather than the
simulations of fMRI data, the engineering performance of
recognition rate and attended spatial locations are presented
for an image dataset in the experiment.

In what follows, we first explain the structure of the pro-
posed WWN-1. Key components of the model are presented
in Section III, IV, V, addressing local receptive field, cortical
activation and lateral connections, respectively. Section VI
provides the algorithm of weight adaptation in the proposed
network. Experimental results are reported in Sec. VII and
concluding remarks are provided in Sec. VIII.

II. NETWORK OVERVIEW

Structurally, the “Where-What” Network 1 is a set of
connected two-dimensional cortical layers, each containing a
set of neurons, arranged in a multi-level hierarchy. The number
of levels of neurons is determined by the size of local receptive
fields and staggered distance, discussed in Sec. III. An example
of the network is shown in Fig.1. Its network architecture and
parameters will be used in our experiments of Sec. VII. The
network operates at discrete times t = 0, 1, .... Each neuron is
placed at a 2D position in a layer, so that each layer forms a
grid of n × n neurons.

The external sensors are considered to be on the bottom
(layer 0) and the external motors on the top (layer N ). Neurons
are interconnected with nonnegative weights. For each neuron
(i, j), at level l (0 < l < N), there are four weight vectors,
as illustrated in Fig.2:

Level l

Level l + 1

Level l - 1

Neigborhoods with lateral excitation

Neigborhoods with lateral inhibition

Local input field

Local effector field 

Fig. 2. For in-place learning, neurons are placed (given a position) on
different levels in an end-to-end hierarchy – from sensors to motors.
A neuron has feed-forward, horizontal, or feedback projections to it.

1) bottom-up weight vector wb
i,j that links connections

from its local input field in the previous level;
2) top-down weight vector wt

i,j that links connections
from its effector field, either local or global, in the next
level;

3) lateral weight vector wh
i,j that links inhibitory connec-

tions from neurons in the same layer (long range).
4) lateral weight vector we

i,j that links excitatory connec-
tions from neurons in the same layer (short range).

III. LOCAL RECEPTIVE FIELDS

Hubel and Wiesel (e.g., [3]) explained that receptive fields
of cells at one cortical area of the visual system are determined
by input from cells at an earlier area of the visual system. In
this manner, small, simple receptive fields could be combined
to form large, complex receptive fields. Localized connections
are utilized in the WWN-1, providing a structural basis for
local attention. Attention selection needs to suppress neuronal
responses whose receptive fields fall out of the attended
receptive field.

Each neuron receives its input from a restricted region in
the previous layer, called local input field. Fig. 3 shows the
organization of square input fields in a layer consisting of n×n
neural units. Where a connection falls outside of the neuronal
plane, the input is always 0. Let Sl and dl be the number of
neurons and staggered distance in the current layer l. The total
number of input fields, namely, the number of neurons in the
next layer is thus determined by:

Sl+1 =

(√
Sl

dl

)2

(1)



Layer 3: “ What ” Motor
Number of neurons: 5

Input field size: 40x40

Receptive field size: 40x40

Layer 0: Input
Number of pixels: 40x40

  

Object size: 20x20

Layer 1: Orientation selective filters 
Number of neurons: 40x40
Input field size: 11x11

Receptive field size: 11x11

Layer 3: “ Where ” Motor
Number of neurons: 40x40

Input field size: 11x11

Receptive field size: 31x31

Effector field size: 11x11

Layer 2: 
Number of neurons: 40x40
Input field size: 11x11

Receptive field size: 21x21

Effector field size (where): 11x11

Effector field size (what): 5

Fig. 1. The specific network architecture and parameters in our experiment.

For n×n neurons shown in Fig. 3, therefore, there are n×n
neurons in the next layer, when the staggered distance is set
to be 1.

Neural units (n x n)

Stagger
distance

... ...

... ...

Size of input field 

Neuron

Fig. 3. Input field boundaries and numbering scheme for neurons
in a layer. When the local input field falls out of the input neuronal
plane, the corresponding inputs are zeros (black areas in the figure).

The overlapped square input fields allow the network to
obtain alternative receptive fields at multiple scales and posi-
tions. Fig. 4 shows how the receptive fields increase from one
layer to the next until the entire input is covered with a single
receptive field. This representation provides information for
receptive fields at different locations and with different sizes.

IV. CORTICAL ACTIVATION

From Layer 1 to Layer N − 2 of the proposed network,
the layer responses are computed the same way as described
in [13], except that local connections are applied here. The
pre-response zi,j of the neuron (i, j) is determined by

zi,j = gi

(
(1−α)

wb
i,j(t) · xi,j(t)

‖wb
i,j(t)‖‖xi,j(t)‖+α

wt
i,j(t) · yi,j(t)

‖wt
i,j(t)‖‖yi,j(t)‖

)

where xi,j is the local bottom-up input and yi,j is the local or
global top-down input. g is its nonlinear (or a piecewise linear
approximation) sigmoidal function. α (0 ≤ α ≤ 1) denotes a
specific weight that controls the maximum contribution by the
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Fig. 4. The architecture of receptive fields in different scales and
positions. The size of the receptive field in a particular layer is 8
larger than its previous layer in this diagram (shown at the right),
whereas the size of input field is set to be 9 at each layer.

Level N-1

Level N

"Where"  motor

"What"  motor
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w
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t
w
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Fig. 5. Top-down projection onto Layer N − 1.

top-down versus the bottom-up. The length normalization of
xi,j and yi,j ensures that the bottom-up part and top-down
part are equally scaled.

Layer N − 1, however, receives the top-down projection
from both “where” motor layer and “what” motor layer (see
Fig. 5). Thus, the pre-response zi,j of the neuron (i, j) is



determined by

zi,j = gi

(
(1 − α)

wb
i,j(t) · xi,j(t)

‖wb
i,j(t)‖‖xi,j(t)‖+

α
(
(1−β)

wt1
i,j(t) · y1

i,j(t)
‖wt1 i,j(t)‖‖y1

i,j(t)‖
+β

wt2
i,j(t) · y2

i,j(t)
‖wt2 i,j(t)‖‖y2

i,j(t)‖
))

wt1
i,j and wt2

i,j are top-down weights received from
“where” and “what” motors, respectively. y1

i,j and y2
i,j

are the top-down inputs from the “where” motor and “what”
motor, respectively. β (0 ≤ β ≤ 1) is the weight that controls
the maximum contribution by the “what” motor.

V. NEURON COMPETITION

Lateral inhibition is a mechanism of competition among
neurons in the same layer. The output of neuron A is used
to inhibit the output of neuron B, which shares a part of
the input field with A, totally or partially. As an example
shown in Fig.6, the neighborhood of lateral inhibition contains
(2h−1)×(2h−1) neurons, because neuron (i, j) and (i, j−h)
do not share any input field at all. We realize that the net effect
of lateral inhibition is (a) for the strongly responding neurons
to effectively suppress weakly responding neurons, and (b)
for the weakly responding neurons to less effectively suppress
strongly responding neurons. Since each neuron needs the
output of other neurons in the same layer and they also need
the output from this neuron, a direct computation will require
iterations, which is time consuming. To avoid iterations, we
use the following local top-k mechanism.

For any neuron (i, j) in the layer l (1 < l ≤ N ), we sort
all the pre-responses from neurons, centered at positions inside
the input field of neuron (i, j). After sorting, they are in order:
z1 ≥ z2 ≥ ... ≥ zm. The pre-responses of top-k responding
neurons are scaled with non-zero factor. All other neurons
in the neighborhood have zero responses. Suppose the pre-
response zi,j of neuron (i, j) is the top q in the local inhibitory
neighbors, i.e. zi,j = zq. Its response z′i,j is then

z′i,j =
{

zi,j × (zq − zk+1)/(z1 − zk+1) if 1 ≤ q ≤ k
0 otherwise

In other words, if the pre-response of neuron (i, j) is the
local top-1, then this response is the same as its pre-response.
Otherwise, its pre-response is lower than its pre-response, to
simulate lateral inhibition. A larger k gives more information
about the position of the input in relation with the top-k
winning neurons. However, an overly large k will violate the
sparse coding principle (i.e., neurons should be selective in
responding so that different neurons detect different features).
In our experiments, k is set at 5% of the number of neurons
in the local input field. Sparse-coding is a result of lateral in-
hibition, stimulated by the local top-k rule. It allows relatively
few winning neurons to fire in order to disregard less relevant
feature detectors.

Input field of neuron

      (i, j-h)

Input field of neuron 

       (i, j)

hji
z

−, ji
z ,

        Neighborhood 

        of lateral inhibition

          

Fig. 6. The neuron (i, j) has a (2h−1)× (2h−1) neighborhood of
lateral inhibition, while neuron (i, j) and neuron (i, j − h) did not
share any input fields.

VI. WEIGHT ADAPTATION

After the responses have been computed, the connection
weights of each neuron are updated if the neuron has non-
zero response. Both the bottom-up and top-down weights adapt
according to the same biologically motivated mechanism:
the Hebb rule. For a neuron (i, j) with non-zero response
(along with its 3 × 3 neighboring neurons), the weights are
updated using the neuron’s own internal temporally scheduled
plasticity:{

wb
i,j(t) = ω1wb

i,j(t − 1) + ω2z
′
i,jxi,j(t)

wt
i,j(t) = ω1wt

i,j(t − 1) + ω2z
′
i,jyi,j(t)

The 3×3 updating rule is to model the lateral excitation on the
short-range neighboring neurons, in order to achieve a smooth
representation across the layer.

The scheduled plasticity is determined by its two age-
dependent weights:

ω1 =
ni,j − 1 − µ(ni,j)

ni,j
, ω2 =

1 + µ(ni,j)
ni,j

,

where ni,j is the number of updates that the neuron has gone
through, with ω1 + ω2 ≡ 1. µ(ni,j) is a plasticity function
defined as

µ(ni,j) =

⎧⎨
⎩

0 if ni,j ≤ t1,
c × (ni,j − t1)/(t2 − t1) if t1 < ni,j ≤ t2,
c + (ni,j − t2)/r if t2 < t

where plasticity parameters t1 = 20, t2 = 200, c = 2, r =
2000 in our implementation.

Finally, the neuron age ni,j is incremented: ni,j ← ni,j +1.
All neurons that do not fire (i.e., zero-response neurons) keep
their weight vector and age unchanged for long-term memory.

VII. EXPERIMENT

Fig. 1 shows a specific set-up of parameters and architecture
implemented in our experiment, where α = 0.3, β = 0.5
for the training process. As a first study of the proposed
framework, “what” motors are simplified to define 5 different
objects, which are shown in Fig. 7(a). The images of objects
are normalized in size, in this case to 20 rows and 20 columns.



Each object is placed in 5 different regions (R1, ..., R5 in Fig
7(b)), defined by “where” motors. For each object-position
combination, different backgrounds (each has 40× 40 dimen-
sions) are randomly selected from natural images1. Thus, there
were 5 (positions) ×20 (backgrounds)= 100 samples for each
object class, and 500 samples in total.

R1 R2

R 3 R4

R5

"Apple"                "Horse"                     "Motor"                 "Person"                 "Table"

(a)

(b)

Fig. 7. (a) Five objects defined by “what” motor. When an object,
e.g. “apple” appears in the image, the corresponding neuron in “what”
motor is set to be 1 and all others to be 0. (b) Five regions defined by
“where” motors. When an object appears in one region, e.g., R1, all
the neurons in R1 are set to be 1 and others set to be 0. The “what”
and “where” motors supervise the learning of neurons weights in
previous layers, through the top-down connections described in Fig.
5

A. Development of Layer 1

We first develop the features in Layer 1 of the proposed
model. 500,000 of 40× 40-pixel image patches are randomly
selected from thirteen natural images 1 (no object presence),
learnt through the in-place learning algorithm described from
Sec. III to Sec. VI, without supervision by motors (α = 1
by the off-line feature development). The developed bottom-
up synaptic weights of all neurons in Layer 1 are shown as
image patches in Fig. 8. They clearly show localized patterns
because each has a local input field with size 11×11. Many of
the developed features resemble the orientation selective cells.

B. Recognition Through Attention

To evaluate the performance of recognition, the network
weights are incrementally updated using one frame of training
images at a time. After the network updated for each training
sample, the network is tested for the recognition rate of all
the samples, where β = 0 to disable the top-down supervision
from “what” pathway. The attended region is supervised by the
“where” motor, using 11×11 local effector fields, to guide the
agent’s attention. As shown in Fig. 9, with the guided attention,
approximately 25% of samples are sufficient to achieve a 90%
recognition rate. However, the recognition rate is only about

1available from http://www.cis.hut.fi/projects/ica/imageica/

Fig. 8. Bottom-up synaptic weights of neurons in Layer 1, developed
through randomly selected patches from natural images.

45% if the attention motor is not available (all zeros) during
the testing. This is a test to show how top-down “where”
supervision helps recognition of “what”.
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Fig. 9. Recognition rate with incremental learning, using one frame
of training images at a time.

C. Attention Through Recognition

To examine the effect of top-down “what” supervision in
identifying where the object is, we only supply the information
of “what” in the “what” motor during tests, where β = 1.
The representation of supervision here is global , i.e., the
input size of top-down connection from “what” motor is 5.
Examples of attention results are shown in Fig.10, where the
network presents better attention capability with the assistance
of “what” supervision. This is a test for how top-down “what”
supervision helps location finding of “where”.

The bottom-up weights of “what” and “where” motors are
shown in Fig. 11. The Fig. 11(a) shows that each “what”



(a)

(b)

(c)

Fig. 10. (a) Examples of input images; (b) Responses of attention
(“where”) motors when supervised by “what” motors. (c) Responses
of attention (“where”) motor when “what” supervision is not avail-
able.

motor detects the corresponding features at different locations
(i.e., position invariance for “what” motors). The Fig. 11(b)
indicates that each “where” motor’s bottom-up weight vector
gives the average pattern in its input field across different
objects. They are selective as not every input component fires
across different objects.

"Apple" "Horse" "Motor" "Person" "Table"

(a)

(b)

Fig. 11. (a) Bottom-up weights of “what” motors in Layer 3. (b)
Bottom-up weights of “where” motors in Layer 3.

VIII. CONCLUSION

Locally connected WWN-1 proposes local feature detectors
at every layer. When two kinds of motor layers are connected
with Layer 2, top-down connections from one motor layer
helps the output from another motor layer in an interesting
way. Specifically, (1) when the “what” motor is on during
stimuli presentation, the features that are (learned to be) asso-
ciated with this particular object are boosted from top-down
attention (i.e., expectation). These boosted object-specific fea-
tures suppress the features that respond to background. Such
suppression enables the “where” motors to report locations
where features are boosted. (2) Conversely, when the “where”
motor is on during stimuli presentation, the features that
are (learned to be) associated with this “where” motor are
boosted from top-down attention (i.e., covert attention instead
of overt eye saccade). These boosted features correspond-
ing to attended object suppress the features that respond to
background. Such suppression leads to a significant boost in
foreground recognition rate with presented natural background
(from 45% to 100% in the experiment). Both the bottom-up
and top-down attention mechanisms have been integrated in
the top-k spatial competition rule, as it takes into account both
bottom-up feature inputs and top-down expectation inputs. The
future studies will include general positions, variable sizes, and
with-in-class object variations. More complete analysis with
the model, in terms of memory efficiency and computational
efficiency, will also be carried out.
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