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Abstract—Dynamic neural field theory has become a popular
technique for modeling the spatio-temporal evolution of activity
within the cortex. When using neural fields the right balance
between excitation and inhibition within the field is crucial for
a stable operation. Finding this balance is a severe problem,
particularly in face of experience-driven changes of synaptic
strengths. Homeostatic plasticity, where the objective function for
each unit is to reach some target firing rate, seems to counteract
this problem. Here we present a recurrent neural network model
composed of excitatory and inhibitory units which can self-
organize via a learning regime incorporating Hebbian plasticity,
homeostatic synaptic scaling, and self-regulatory changes in the
intrinsic excitability of neurons. Furthermore, we do not define
a neural field topology by a fixed lateral connectivity; rather we
learn lateral connections as well.

Index Terms—Dynamic Neural Field, Development, Homeo-
stasis

I. INTRODUCTION

The beginnings of dynamical neural field theory (DNFT)

reach back to the 1950’s [1]. Since that and particularly after

seminal contributions have been done by Wilson and Cowan

[2] as well as Amari [3], DNFT has become a popular tech-

nique for modeling the spatio-temporal evolution of activity

in the brain. Due to its variety in exhibited dynamic behavior

ranging from periodic activity patterns over activity bumps up

to traveling waves [4], neural fields have been used to model

and understand cortical computation in various domains.
For robotic applications localized regions of excitation (ac-

tivity bubbles) following the presentation of a stimulus are

of particular interest. However, those solutions are difficult to

achieve, since the dynamic behavior of neural fields is very

sensitive to the right balance between excitation and inhibition

within the field. Small changes to this balance will result in

runaway excitation or quiescence. Furthermore, the influence

of different parameter settings is only roughly estimated [3],

[5], [6], such that parameters are often chosen heuristically or

optimized via evolutionary strategies.
In contrast, the development of dynamic neural fields is

only rarely explored even though taking a developmental

approach might ultimately overcome the above mentioned

problems. Learning most often focuses on the synaptic weights

of projections from the input space to the neural field, thereby

adapting the input-driven dynamics, but leaving the self-driven

dynamics unchanged (see [7] for an exception of this). For this

reason, extensive normalization strategies, often using network

level knowledge, have to be applied in order to keep the neural

field in a stable regime.
Our approach differs insofar as we do not make any

assumption on the connectivity of the field. In other words,

synaptic weights of both, afferent projections to the field

as well as lateral connections within the field, are learned.

As a direct consequence, neural fields have to self-regulate

in order to maintain a stable operation mode even in face

of these experience-driven changes. Our model incorporates

recent advances in the understanding of homeostatic processes

regulating neuronal activity, namely homeostatic synaptic scal-

ing and changes in the intrinsic excitability of neurons. We

will experimentally show how homeostasis in form of locally

operating processes contributes to the global stability of the

neural field. Due to the self-regulatory nature of our model, the

number of free parameters reduces to a minimum which eases

its use for applications in various domains. It is particularly

suited for modeling cortical development, since the process of

learning the mapping is self-organizing, intrinsically regulated,

and only depends on the statistics of the input patterns.

The rest of the paper is organized as follows. In Section II

we will present the structure of our network model and

discuss the differences to existing approaches. Section III

highlights recent advances in our understanding of homeostatic

processes regulating neuronal activity and shows how these

mechanisms can be incorporated into a learning regime for

the self-regulatory development of dynamic neural fields. In

Section IV we experimentally evaluate our model in the

domain of reference frame transformation. Finally, we will

give a conclusion.

II. DYNAMIC NEURAL FIELDS

Dynamic neural fields are composed of model units dis-

tributed on a plane mimicking the neural tissue. Populations

of neurons interact through extensive lateral connections which

results in dynamic patterns of activity following stimulus

presentation. Amari [3] formulated a field equation by which

most of the present models can be described:

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
w(x, x′) · f(u(x′, t)) dx′

+ S(x, t) + h (1)

Here u(x, t) represents the local activity of a population of

neurons at position x of the cortical plane at time t. The

stimuli to the neural field at position x and time t is denoted by

S(x, t), h is some resting potential which is approached in the

absence of other inputs, and f is a monotonically increasing

transfer function describing the relation between the activation

and the firing rate of neurons. The lateral connectivity from

neurons located at position x′ to neurons located at position

x of the neural tissue is defined by w(x, x′). For most present



Fig. 1. The structure of the recurrent neural network.

network models w(x, x′) = w(x−x′) holds, that is the synap-

tic strength of lateral connections linking neurons of the neural

field only depends on their distance on the cortical plane.

There, a Mexican Hat connectivity realizing local excitation

and distal inhibition is typically chosen. A distance-dependent

lateral connectivity, however, may not be suitable, i.e. for high-

dimensional data which cannot be adequately mapped on a

2-dimensional surface. For this reason, afferent projections to

the field as well as connections within the field should underly

experience-driven changes of synaptic strength.

The structure of the recurrent neural network we present

here is based on the work of Wilson and Cowan [2]. It

is composed of excitatory units E and inhibitory units I,

both being arranged on a 2-dimensional grid mimicking the

neural tissue. The wiring of the network is shown in Fig. 1.

Afferent projections to excitatory units provide the input to

the neural field. Furthermore, the units are laterally connected

such that excitatory cells (E-cells) excite other E-cells as well

as inhibitory cells (I-cells). In turn, E-cells receive inhibitory

projections originating from I-cells.

The membrane potentials of excitatory and inhibitory units

are denoted by the variables u and v, respectively. In the

following we will use i for specifying the unit located at

position xi of the cortical plane. Therewith the spatio-temporal

evolution of the activity in the neural field can be described

by the following differential equations:

τE

dui

dt
= −ui +

∑

j

g(dij) · wEE
ij · f(uj)

−
∑

j

wEI
ij · f(vj)

+
∑

j

wEXT
ij · sj + hE

i (2)

τI

dvi

dt
= −vi +

∑

j

g(dij) · wIE
ij · f(uj) + hI (3)

Here, τE and τI are time constants, hE
i and hI are the resting

potentials, and w∗

ij denotes the synaptic weight of a connection

from unit j to unit i where ∗ ∈ {EE, EI, IE, EXT} specifies

the type of connection. The monotonically increasing transfer

function defining the relation between the membrane potential

and the firing rate of a unit is denoted by f . We used a

sigmoidal function of the form:

f(z) =
1

1 + exp (−γ(z − θ))
(4)

with θ and γ denoting the threshold value and the gain

factor, respectively. Additionally, we introduced a function g

which modulates the efficacy of excitatory lateral connections

depending on the distance dij = xi −xj between the pre- and

postsynaptic unit positions. It was chosen to follow the normal

distribution with a mean of 0 and a standard deviation of σ:

g(d) =
1

σ
√

2π
· exp

(
− d2

2σ2

)
(5)

Thus, we define that excitatory lateral connections between

units within a local neighborhood are more efficient than

those between far-distant units. It is, however, important to

note that this is fundamentally different compared to existing

network models. There the synaptic weight values of lateral

connections were chosen as a function of the distance between

the pre- and postsynaptic units by which a topology on the

neural tissue as well as within the feature space is defined.

In contrast, we introduce a distance-dependent modulation of

synaptic efficiency but do not make any assumption on the

synaptic weight values themselves. Following this argumen-

tation, g could be understood as a physical constraint. The

integration of excitatory synaptic input as it is carried out by

passive dendrites is one possible interpretation. There, it has

been shown that the efficacy of a synaptic input significantly

varies depending on synapse location [8].

A direct consequence of this is that large synaptic weight

values could compensate for the distance-dependent modu-

lation of connection efficiency. Thus, the mapping described

by the neural field does not necessarily have to be topology

preserving, that is nearby units having similar receptive fields.

Direct support for this idea comes from a study recently

carried out by van Hooser et al. [9]. They found orientation-

sensitive cells in the primary visual cortex (V1) of a highly

visual rodent, the gray squirrel, similar to those found in

V1 of humans. But in contrast, orientation-selectivity did not

smoothly vary across the cortical surface. Thus, topology

preserving self-organization does not seem to be a fundamental

principle of mammalian cortical development, rather it seems

to depend on other mechanisms missing in rodents.

Up to now, we described the structure of the recurrent

neural network, but in order to model neural field development,

a learning regime has to be defined. This involves both, a

mechanism for adapting the neural field such that it ade-

quately represents the input pattern distribution as well as self-

regulatory processes keeping the neural field in a stable state.

The former can be achieved via Hebbian forms of synaptic

plasticity, a learning principle usually summarized as cells that

fire together, wire together. This means, if the postsynaptic

cell repeatedly fires following a stimulation by the presynaptic

cell, the synapse linking both cells is strengthened. In its

simplest form Hebbian learning would lead to unconstrained

weight growths. For this reason, saturation or normalization

techniques have to be applied. A famous variant of Hebbian

learning is Oja’s rule [10] described by (6), where wij is the

synaptic weight as well as ηi and ξj the pre- and postsynaptic

activities, respectively.

∆wij ∝ ηi · ξj − wij · η2

i (6)

Here the first term represents the basic Hebbian learning rule,

whereas the second term regulates the synaptic weight change



via an activity-dependent leakage. More importantly, it has

been shown that a neuron using this learning rule tends to

extract the statistically most significant factor from its inputs,

the principle component. Therewith it is a suitable learning

technique for adapting the synaptic weights of a neural field.

As mentioned earlier, a balanced excitatory and inhibitory

connectivity is crucial in order to keep the dynamic neural

field in a proper working state. Finding this right balance is

a severe problem, which becomes even more significant when

synaptic weights change through some learning mechanism.

In other words, self-regulatory processes counteracting these

changes have to be applied [11]. In the following we will

highlight recent advances in the understanding of homeostatic

processes regulating neuronal activity and show how they can

be incorporated into a learning regime for the development of

continuous neural fields.

III. HOMEOSTATIC PLASTICITY

Homeostatic mechanisms can be described as processes

intrinsic to a system, which regulate the internal environment

in face of a changing external environment in order to keep

the system in a stable state. In the case of the nervous system

numerous homeostatic processes acting at different parts of

the neural circuit can be distinguished [12]. Here we will

concentrate on those operating at the synaptic level, so called

homeostatic synaptic plasticity [13], and those causing neuron-

wide changes in intrinsic excitability [14].

Changes induced by homeostasis occur at a relatively slow

time scale, possibly hours or days, which is important in

order not to destroy moment-to-moment fluctuations in activity

carrying the information to be learned. Conversely, they have

to be fast enough in order to compensate for changes induced

by (Hebbian) learning [13]. The need for a stably operating

neural circuit is directly correlated to the need of regulating

overall activity. Compelling evidence point to the fact that

homeostatic processes aim at regulating the average activity

of individual units towards some target firing rate, thereby

implicitly regulating overall activity. For example it has been

shown that blocking of excitatory or inhibitory input to a

cell results in initially depressed or increased cell activity,

respectively, but over time cell activity approaches control

level again [15].

The need of regulating an individual neuron’s average

activity necessitates the ability of a neuron to monitor its

own activity, a property typically attributed to changes in

intracellular calcium concentrations [16]. Computationally, a

mean firing rate Āi of a neuron i can be easily computed using

the following equation:

Āi(k) = (1 − 1

τH

) · Āi(k − 1) +
1

τH

· Ai(k) (7)

where Ai(k) = f(ui(k)) is the instantaneous firing rate of the

unit at discrete time k and τH a time constant defining the

time scale on which integration takes place.

In order to reach some target firing rate, a neuron can

adjust the synaptic weights of its afferent projections, an

ability commonly referred to as synaptic scaling. Different

forms of modifying synaptic strength are possible, namely

additive and multiplicative synaptic scaling. The different

effects of both techniques have been highlighted in [17]. For

the central nervous system it has been shown that neurons

adjust their synaptic weights multiplicatively [18], which has

the computationally attractive feature of leaving the relative

difference in synaptic weights unchanged.

The previously mentioned Oja’s rule (see (6)) as a special

variant of Hebbian learning performs multiplicative scaling

as well. Why should we then need additional mechanisms

for the regulation of synaptic strengths? The key difference

is the objective function controlling synaptic scaling. If a

neuron aims at maintaining some target firing rate, it has to

adjust the balance between excitatory and inhibitory currents

as well, which is a property not targeted by Oja’s rule. Even

small changes in the excitatory-inhibitory balance can disrupt

network performance, meaning that dynamic adjustments in

the relative strength of excitatory and inhibitory feedback on

excitatory neurons is an important component of firing rate

homeostasis [13].

Neuroscientific studies indicate that this dynamic adjust-

ment is mediated by the activity-dependent release of the

neurotrophin BDNF (brain-derived neurotrophic factor) [19].

Interestingly, this means that the activity of inhibitory interneu-

rons is regulated by adjusting the synaptic strengths of their

afferent excitatory projections depending on the activity of the

presynaptic pyramidal cell (releasing the BDNF). Furthermore,

it has been shown that BDNF has opposing effects on the

scaling of excitatory synapses on pyramidal neurons and

interneurons, thereby changing the ratio between the firing

rates of excitatory and inhibitory neurons [20]. A high BDNF

level reduces the synaptic strengths on excitatory neurons,

whereas it increases synaptic strengths on inhibitory neurons

and vice versa.

We modeled the BDNF release of an excitatory unit i

(E–cell) given its mean firing rate ĀE
i (see (7)) and a target

firing rate Â as follows:

BDNFE
i (k) = 1 + βH

(
ĀE

i (k − 1) − Â

Â

)
(8)

where βH is a homeostatic learning rate. According to (8)

the BDNF release is greater than 1, if the mean firing rate

exceeds its target level, whereas it is smaller than 1, if the

mean firing rate lies below its target level. A similar normal-

ization factor was recently proposed for the synaptic scaling

within self-organizing maps [21]. However, the application

of the normalization factor differs significantly. We modeled

the evolution of the synaptic weights within our recurrent

neural network by a combination of Oja’s rule described by

(6) and the BDNF normalization factor of (8). Additionally,

different types of synapses are differently scaled according

to the opposing effects of BDNF [20]. The resulting learning

technique is described by the following formulas:

wEXT
ij (k) =

wEXT
ij (k − 1) + α · ∆w̃EXT

ij (k)

BDNFE
i (k) · BDNFEXT

j (k)
(9)

wEE
ij (k) =

wEE
ij (k − 1) + α · ∆w̃EE

ij (k)

BDNFE
i (k) · BDNFE

j (k)
(10)



wEI
ij (k) =

[
wEI

ij (k − 1) + α · ∆w̃EI
ij (k)

]
· BDNFE

i (k) (11)

wIE
ij (k) =

[
wIE

ij (k − 1) + α · ∆w̃IE
ij (k)

]
· BDNFE

j (k) (12)

where ∆w̃∗

ij(k) with ∗ ∈ {EE, EI, IE, EXT} denotes the

weight change according to Oja’s rule and α a learning rate.

So far we focused on homeostatic mechanisms operating at

the synapses directly. Another category of self-regulatory pro-

cesses dynamically adjust neuronal properties like the transfer

function, thereby changing a neuron’s intrinsic excitability.

But what is the benefit of multiple simultaneously operating

homeostatic processes and do we need to incorporate an

additional mechanism at all? For sure, both above mentioned

processes try to locally adapt neural circuits and even their

objective functions seem to be the same (individual neurons

try to reach a target firing rate). However, the way by which

self-regulation is achieved differs significantly. Homeostatic

synaptic scaling dynamically adjust the balance between ex-

citation and inhibition, which is due to the opposing effects

of BDNF. An activity-level dependent release of BDNF of

course means that synaptic scaling operates with respect to the

transfer function of neurons. Nevertheless, it does not ensure

that the settled balance between excitation and inhibition

results in membrane potentials which lie within the dynamic

range a neuron is most sensible to. This drawback can be

compensated by adjusting the transfer functions of neurons.

For this reason, the incorporation of homeostatic processes

changing synaptic strengths as well as the excitability of

neurons may be necessary in order to reach optimal solutions.

Given a sigmoidal transfer function f according to (4),

a neurons intrinsic excitability can be changed by dynam-

ically adjusting the gain and threshold parameter γ and θ,

respectively. In a recent work, Triesch [22] derived an update

mechanism for the parameters based on information theory.

Here, we restrict our work to dynamically adjusting the

transfer function’s threshold value of excitatory neurons. Since

changing the resting potential hE
i of an excitatory neuron

i is equivalent to threshold adaption, we did not vary the

threshold parameter θ, rather we adapted the resting potentials

hE
i . Due to the fact that changes in the intrinsic excitability of a

neuron seems to be induced by changes in intracellular calcium

concentrations, which is a correlate of a neurons activity level,

we follow the same argumentation as for homeostatic synaptic

scaling. A neuron adjusts its excitability given its average

activity level ĀE
i and some target firing rate Â. If a neuron’s

activity level exceeds its target level, the neuron’s excitability

has to be reduced which can be achieved by decreasing its

resting potential. Conversely, an increase of a neuron’s resting

potential is suitable, if its excitability should be larger as it

is the case when the neuron’s activity level does not reach its

target level. The following formula describes the evolution of

the resting potentials we used within our network model:

hE
i (k) = hE

i (k − 1) + βT ·
(

Â − ĀE
i (k − 1)

Â

)
(13)

There βT denotes a learning rate representing the time scale

at which homeostatis via threshold adaptation takes place.
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Fig. 2. The receptive fields of the neurons used for coding the gaze
position in body-centered coordinates (s1), the hand position in body-centered
coordinates (s2), and the hand-position in an eye-centered reference frame
(s3).

IV. EXPERIMENTAL RESULTS

In order to evaluate the presented recurrent neural network

model, we carried out an experiment in the domain of refer-

ence frame transformation. More precisely, we investigated the

use of dynamic neural fields for 1-dimensional eye-hand coor-

dination. In order to robustly perform eye-hand coordination,

an animal has to be able to transform between the different

reference frames [23]. This ability is usually attributed to an

intermodal body-calibration obtained in the early stages of

development [24]. There, the key aspect is that simultaneously

present stimuli become linked together and can later be

used for the transformation from one modality into another

[25]. Here, we want to use our network for modeling the

calibration process during early self-exploration. Therefore, we

have chosen three stimuli s1,s2,s3 with s1, s2 ∈ [−1, 1] and

s3= s1– s2, where s1 and s2 mimic the gaze and hand position

in a body-centered reference frame, respectively, as well as s3

representing the hand position in eye-centered coordinates.

The experimental setup is as follows. Each of the three

stimuli s1,s2,s3 is represented by a population code composed

of 21 neuron responses, resulting in a total of 63 inputs to the

neural field. The receptive fields of the neurons coding the

stimuli are shown in Fig. 2. Target gaze- and hand-positions

(s1, s2) were chosen randomly, but in order to obtain smooth

transitions between target positions, head and hand movements

exhibit simple linear dynamics. The recurrent neural network

is composed of 100 excitatory units and 100 inhibitory units,

both being arranged on a 10x10 grid. The synaptic weight

values of afferent projections to the field wEXT
ij were initial-

ized with small random values. Weights of lateral connections

were initialized uniformly. In contrast to the LISSOM model

[7], which also features plastic lateral connections, we do not

make any assumption on when learning takes place. More

precisely, in [7] the synaptic weights were changed only after

the network settled into a stable state. In our network model

learning is performed at each timestep.

Over the course of development, the recurrent neural net-

work self-organizes via balanced cooperation and competition.

In an initial phase, the neural field grossly adapts to the

input pattern distribution. After that, the receptive fields of

the neurons become more and more distinct. Fig. 3 shows the

developed receptive fields of the excitatory units in the s1-

s2-plane after several stimuli have been presented. As can be
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Fig. 4. The position of the excitatory neurons in feature space (s1-s2-s3-
plane) as obtained by calculating the receptive fields’ center of masses.

seen, each neuron specializes to a particular combination of s1

and s2. Furthermore, we calculated the center of masses of the

receptive fields, thereby obtaining the neuron positions in the

feature space. As illustrated in Fig. 4, the neurons are nicely

distributed on the s1-s2-s3-plane which means that each input

pattern is adequately represented by the neural field.

A quantitative measure of the functional quality of the map-

ping can be obtained by comparing the neural field responses

following the presentation of different stimuli. Small changes

in the input should result in small changes in the output,

whereas large changes in the output should be obtained fol-

lowing the presentation of largely different inputs. Therefore,

we treated inputs s ∈ ℜ63 and outputs A ∈ ℜ100 as vectors

and calculated their normalized changes (∆s and ∆A) for

all possible pairs of stimuli. In Fig. 5 (a) the means and the

variances of the differences in output activity for all possible

changes in input activity are plotted. The curve nicely follows

the above argumentation, in that the difference between nor-

malized input vectors of pair-wise presented stimuli is reflected

in the difference between the resulting normalized output

vectors. In other words, the more similar (different) inputs

representing different stimuli are, the more similar (different)

are the corresponding output vectors of the neural field.

Another interesting aspect is, whether the learned mapping

is topology preserving, that is nearby units having similar

receptive fields. As already discussed in Section II, the map-

ping learned by our recurrent neural network model does not

necessarily has to be topology preserving, since we do not
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Fig. 5. The means and variances of (a) the normalized changes in output
activity and (b) the distance between the locations of peak activity given
the normalized changes in input activity for pair-wise presented stimuli,
respectively.

make any assumption on the synaptic weights of the lateral

connections within the field. However, the development of

topology preserving mappings does not seem to be a funda-

mental principle for cortical development. It might even be

not necessarily possible since high-dimensional inputs cannot

be easily mapped onto the 2-dimensional cortical surface.

Nevertheless, in order to give a quantitative measure for the

learned mapping, we calculated the euclidean distance between

neurons on the grid (∆x), which exhibit the peak responses

following the presentation of different stimuli. A pair-wise

comparison results in the curve depicted in Fig. 5 (b). As it is

shown, the larger the distances between two normalized input

vectors are, the larger the mean distances between the locations

of the corresponding peak responses become. However, the

plot also indicates large variances in the measurements which

demonstrates that the learned mapping is not strictly topology

preserving. A typical example for this is shown in Fig. 6. In (a)

the neural field activity following the presentation of a stimulus

(s1 = 0.4, s2 = −0.3, s3 = 0.7) is plotted according to the

position of the neurons on the cortical plane, which results in

multiple peaks of activity. In contrast, (b) shows the neural

field activity following the presentation of the same stimulus

according to the neurons’ positions in the feature space. Here,

a single activity bubble arises.

Lastly, we investigated how locally operating homeostatic

mechanisms with a neuron’s objective function of reaching

some average firing rate affect the overall activity of the neural

field. Therefore, we calculated a running average of the overall

field activity for different target firing rates Â of individual

neurons. As Fig. 7 shows, the overall field activity quickly

rises towards a mean activity level proportional to the target

firing rates of individual neurons. After that, the neural field

activity oscillates around the mean activity level where the

period of oscillations is dependent on the time scale at which

homeostatic processes operate.

V. CONCLUSION

We presented a recurrent neural network model for the self-

regulatory development of dynamic neural fields. In contrast

to previously published approaches, the synaptic weights of

all connections within our network model are plastic. Partic-

ularly, we do not fix lateral connections, rather they underly

experience-driven changes via Hebbian forms of plasticity as

well. As a direct consequence, a mapping described by the
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Fig. 6. The neural field activity following the presentation of a stimulus
(s1 = 0.4, s2 = −0.3, s3 = 0.7) is plotted according to (a) the position
of the neurons on the cortical plane and (b) the position of the neurons in
feature space.

0.5 1.5 2.5

x 10
5

0

10

time [samples]

fi
el

d
 a

ct
iv

it
y
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Fig. 7. Running averages of the overall field activity for different target
firing rates of individual neurons.

neural field does not necessarily have to be topology preserv-

ing. We propose, that in order to develop topology preserving

mappings, another mechanism has to be incorporated.

In order to keep the neural field in a stable state even in face

of experience-driven changes of synaptic strengths, we applied

biologically inspired forms of homeostatic plasticity, namely

synaptic scaling and changes in a neuron’s intrinsic excitabil-

ity. These locally operating self-regulatory mechanisms aim

at changing the activity levels of individual neurons towards

some target firing rate. Depending on its average activity

level, a neuron is able to adjust its synaptic weights (thereby

changing the ratio between excitation and inhibition within the

field) and its intrinsic excitability via threshold adaptation.

By incorporating homeostatic processes, the number of free

parameters that have to be controlled reduces to the time

constants and the target firing rate of individual neurons. Here,

particularly the latter is very interesting, since the target firing

rate of individual units defines the overall activity in the field,

the overlap between the receptive fields of single units and

therewith the sparsity of the developed representation. How-

ever, here we did not experimentally evaluate the influence of

different parameter settings.

Due to its low number in controllable parameters, the

present work will ease the use of neural fields in applications

of various domains. Our network is particularly interesting

when taking a developmental perspective, because the specifi-

cation of the input patterns (i.e. stimuli of different modalities

that have to be correlated) is sufficient for obtaining the desired

functional behavior, whereas the process of establishing the

mapping is self-organizing and intrinsically regulated.

We experimentally tested our network model in the domain

of reference frame transformation and showed that it self-

organizes without the use of any external supervision. It

adjusts the receptive fields of its units such that the input

pattern distribution is adequately represented. Furthermore,

we illustrated that locally operating homeostatic processes are

sufficient for keeping the overall network in a stable state.

The incorporation of a mechanism for enhancing topology

preservation during neural field development as well as the

use of our network model within architectures composed of

several layers will be part of our future work.
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