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Abstract—This paper considers the role of shaping in appli-
cations of reinforcement learning, and proposes a formulation
of shaping as a homotopy-continuation method. By considering
reinforcement learning tasks as elements in an abstracted task
space, we conceptualize shaping as a trajectory in task space,
leading from simple tasks to harder ones. The solution of earlier,
simpler tasks serves to initialize and facilitate the solution of later,
harder tasks. We list the different ways reinforcement learning
tasks may be modified, and review cases where continuation
methods were employed (most of which were originally presented
outside the context of shaping). We contrast our proposed
view with previous work on computational shaping, and argue
against the often-held view that equates shaping with a rich
reward scheme. We conclude by discussing a proposed research
agenda for the computational study of shaping in the context of
reinforcement learning.

I. INTRODUCTION

Behaviorist psychology explores the mechanisms of learn-
ing through reward and punishment, and provides inspiration
and motivation to the machine learning paradigm of computa-
tional reinforcement learning (RL). As may be expected, the
computational rendering of RL differs from the psychological
theory of reinforcement learning in many ways, but preserves
an important essence: success is achieved by maximizing
future rewards.

Shaping is another notion, central to behaviorist psychology,
that has seen several computational renderings. In the disci-
pline of psychology, the word shaping refers to a conditioning
procedure used to train subjects to perform tasks that are too
difficult to learn directly. Through shaping, the trainer induces
the desired behavior by means of differential reinforcement
of successive approximations to that behavior. This means
that the subject is brought to perform the fask of ultimate
interest by mastering a series of related tasks. The successful
learning of one task in the shaping sequence guides the
subject’s behavior in the following task, and facilitates the
learning of later tasks in the sequence. In essence, shaping
is a developmental approach, where the subject is allowed to
refine its skills at it masters the different tasks in the sequence
as they become progressively harder.

In most modern shaping protocols, it is the re-
ward/punishment scheme that changes from one iteration to
the next. At first, the learning agent is rewarded for meeting
a crafted subgoal, which in itself does not fulfill the desired
behavior, but serves as a simpler approximation to it. Once this

subgoal is mastered, the reward scheme changes, and the next
task in the sequence challenges the learning agent to produce
a better approximation to the desired behavior. This sequence
of rewarded subgoal behaviors provides a behavioral scaffold,
eventually bringing the agent to perform the task of ultimate
interest.

However, reward shaping was not the first shaping technique
to be considered, chronologically speaking. In the early days
of behaviorist psychology, it was the experimental setting, and
not the reward scheme, that was altered by the trainer. As
Peterson points out [1], the first practical demonstration of
the power of reward shaping (as part of a research aiming
to use pigeons for missile navigation and control) took place
five years after the publication of B.F. Skinner’s seminal book
“The Behavior of Organisms” in 1938 [2]. A closer look at
the notion of shaping reveals that, despite the contemporary
dominance of reward shaping, the concept itself extends well
beyond merely choosing a rich reward scheme, and applies to
any supervised modification of the learning task (see section
IV). In this paper we wish to explore the different ways in
which we can find a solution to a task that is too hard to master
independently, by crafting a sequence of related, easier tasks.
As the next section shows, modifying the reward function,
or the experimental environment, are but two examples of
employing shaping in RL.

The notion of successive approximations that converge to a
desired outcome is a staple of computer science, and therefore
there is reason to hope that one could identify a natural
way to render shaping in computational terms. In this paper
we propose that shaping can be associated with the class of
algorithms known as homotopy-continuation methods [3]. We
explore the different ways of shaping by bringing together
a diverse body of works from the RL literature, and showing
how our computational interpretation of shaping easily applies
to all of them. The essence of shaping we wish to render in
computational terms is that of a supervised, iterative process,
whereby the learned task is repeatedly modified in some
meaningful way by an external trainer, so as to eventually
bring the learning agent to perform the behavior of ultimate
interest.

In order to anchor the technical terms used in the rest of
the paper, the next section is dedicated to a quick review
of computational reinforcement learning. In section III we
present an exhaustive list of the different ways shaping can be



rendered computationally within the RL paradigm. For each
such category we discuss what is being shaped and present
prior work which demonstrated the merit of this shaping
technique. Finally, we conclude with a broader discussion,
and contrast our perspective with previous realizations of
computational shaping.

II. COMPUTATIONAL RL TERMINOLOGY

This exposition offers a quick review of the computational
theory of reinforcement learning; the reader familiar with RL
vocabulary may safely skip ahead to section III without losing
sight of the main argument.

In RL, we render the problem of behaving optimally as an
optimisation problem: an agent interacts with an environment,
and this interaction yields an instantaneous scalar reward,
serving as a measure of performance. The agent’s goal is to
behave in a way that maximizes future rewards.! For example,
the task of balancing a pole on one’s hand could be described
by rewarding the agent for keeping the pole perpendicular to
the ground at its unstable equilibrium.

All the properties of the agent and the environment that
may change through time are captured by the system’s state.”
The agent realizes its agency by choosing an action at every
time step, which affects the next state. The current state of the
system, together with the chosen action (and, of course, some
domain-specific, fixed parameters), allow two key evaluations:
first, the current state and action determine the instantaneous
reward; second, the current state and action determine the
system’s next state. In the above-mentioned example, the
system’s state includes the pole’s angle and angular velocity,
as well as the hand position and velocity. The agent acts by
moving its hand, and hence the pole’s tip.

The computational representation of the progression of
states in RL can take several forms: in the simplest case, time
is discrete. In this case, an action is chosen every time step, and
the next state is determined by the current state and the chosen
action. If time is continuous, the mathematical formulation
becomes more complicated, as both state and action are
functions of time. If the dynamical system is stochastic, the
current state and action determine the probability distribution
of the next state.

In some cases, the state space is finite and discrete. For
example, in the game of chess every piece can only be in
one of 64 positions. In the case where mechanical systems
are studied, the state space is often abstracted as a continuous
vector field. The same holds for the action space.

The agent’s behavior is described by the policy function, a
mapping from state to action that describes the agent’s action
at a given state and time, perhaps probabilistically. Since the
policy determines the agent’s behavior, it is the object for

I An alternative definition, of minimizing future costs, is ubiquitous in the
Optimal Control literature, but since it is mathematically equivalent, we make
the arbitrary choice of using the reward-based terminology.

2In the fully-observable case the agent has full knowledge of the current
state, while in the partially-observable case it may have access only to a
noisy and/or partial observation of the state. For clarity, in the remainder of
this exposition we will refer only to the fully-observable case.

learning and optimization. Broadly stated, the agent’s goal
is to find a policy that would maximize future rewards, or
their expectations. These rewards may be summed (in the
discrete case) or integrated (in the continuous case) over a
finite or infinite future time horizon, perhaps using some form
of discounting rewards in the far future.

One of the fundamental approaches in RL involves the
value function. Given a fixed policy, the value of a state is
the total sum of (expected) future rewards. Therefore, the
agent’s goal can be formally stated as finding the policy that
maximizes the value of all states. Intuitively, the value of
a state indicates how desirable this state is, based not on
the greedy consideration of instantaneous reward, but in full
consideration of future rewards. For example, let us consider
two states of the pole-balancing domain with the pole being in
the same non-perpendicular angle. In one, the pole’s angular
velocity is directed towards the balancing point; in the other, it
is directed away from it. If the instantaneous reward depends
only on the angle of the pole from the above example, both
states would provide the same reward. Yet, the optimal value
of these two states is different, the first state being clearly
better than the second.

As interaction (and learning) commences, the agent is
placed in an initial state (perhaps chosen probabilistically)
and is equipped with an initial, suboptimal policy (perhaps
a stochastic one). The agent learns through a particular inter-
action history (sequences of state-action-reward triplets), with
the goal of devising a policy that would lead it through the
most favorable sequences of states, and allow it to collect
maximum rewards along the way.

A key concept in computational models is that of compu-
tational representation. In many cases, the same task can be
described using different terms; for example, when describing
a body pose of a limbed robot, we may specify the joint angles
together with the position of the center-of-mass, or the position
and orientation of each limb. Even if different representations
of the same domain are mathematically equivalent, they may
generate different computational constraints and opportunities.
For example, consider the case where the reward is a func-
tion of the position of the center-of-mass. In the first case,
this dependency would be clearly manifested through simple
correlation, while in the other case this dependency would be
more hidden. The choice of representation is known to be a
subtle issue in all domains of machine learning, and is often
the locus of intervention where the researcher can input some
prior domain knowledge to facilitate solving the task.

For further reading on computational reinforcement learning
we recommend the canonical book by Sutton and Barto [4], as
well as the widely-cited survey paper by Kaelbling, Littman
and Moore [5].

III. THE DIFFERENT WAYS OF SHAPING

As stated before, we view shaping as an iterative process,
composed of a sequence of related tasks. At every iteration, the
final solution to the previous task informs the initial solution in
the present task. Delving deeper into mathematical abstraction,



we can think of a shaping sequence as a homotopy in the
space of all RL tasks, a path leading from an initial, simple
task, to the task of ultimate interest, through a sequence of
intermediate tasks. This is a powerful metaphor, because it
allows us to associate between several distinct algorithms as
different homotopy-paths that traverse different dimensions
of task space. Since an RL task is characterized by several
aspects (dynamical function, reward function, initial state, and
so forth), the space of all tasks is high-dimensional, and there
can be many different paths connecting any two tasks. This
means that when designing a shaping protocol, many aspects
of the task can be modified at each step.

In the following list we enumerate the different dimensions
along which tasks can be altered. For most categories, we
were able to find prior RL work which explored that particular
rendering of the homotopic principle, even if most works
considered didn’t refer to their proposed technique by the term
’shaping’. While some categories have direct counterparts in
the world of behaviorist psychology, others come about due
to the way an RL task is represented computationally. It is
important to note that the works we present as examples do
not comprise a comprehensive list of all papers ever to employ
that kind of shaping, and are mentioned merely for illustration
purposes.

1) Modifying the reward function: This category includes

cases where the reward function changes between iter-
ations. For example, in order to reward the agent for
achieving a sequence of subgoals that eventually con-
verge to the behavior of ultimate interest. As mentioned
before, this is the most straightforward rendering of
behaviorist shaping in its common form. There have
been several RL works that take this approach. One
such example is by Gullapalli [6], where a simulated
robot arm is trained to press a key through successive
approximations of the final desired behavior.
One important variant of this category is chaining, where
subgoals follow each other sequentially to compose
the behavior of ultimate interest. Singh [7] discusses
learning compositional tasks made of elemental tasks
in a simulated gridworld. Another interesting example,
focusing on motor learning in non-symbolic domains, is
Via-Point Representation [8], [9]. An impressive illus-
tration of this approach is a real robotic 3-link chain of
rigid bodies, trained to stand up by following a sequence
of motions: first, it is trained to assume a sitting position
(which is statically stable), then it is trained to reach
a crouched position from the sitting position, and only
then it is trained to reach a standing position from the
crouched position.

2) Modifying the dynamics: this category includes cases
where physical properties of the system change between
iterations. These might be physical properties of the
environment or of the agent itself. An example for the
first case (changing the environment) is the gradual
elevation of a lever, in order to bring a rat to stand on

its hind legs. An example of the second case (changing
the agent) is the way people train to walk on stilts: first,
one learns to walk stably on short stilts, and then the
length of the stilts is gradually extended. As mentioned
before, Skinner’s original experiments in the 1930s were
along these lines, and the reward shaping is a later
development from the 1940s.

An early example for using this approach in machine
learning is the early work of Selfridge, Sutton and Barto
[10], where optimal control of the pole-balancing task
is achieved by gradually modifying the task parameters
from easier to harder variants (e.g. starting with a heavy
pole and switching to a lighter one, or starting with a
long track and gradually reducing its length). Randlgv
[11] proved that a shaping sequence that convergences to
a final task entails convergence of the solution sequence
to the final optimal solution for the case of global
@-function approximation over finite Markov Decision
Processes.

A different perspective on modifying the dynamics
comes about when learning stochastic dynamics.® As-
suming that the dynamics are strongly influenced by
noise may lead to different responses in different al-
gorithms: the lack of confidence in the generality of the
particular history encountered may lead to a smoother
estimation of the value [12], or, in case noise is modeled
as an adversary in a noncooperative differential game
[13], [14], increased noise means a stronger adversary. In
the first case, it has been shown [15] that the smoothing
effect of noise may serve as antidote against overfitting
the value function, and by gradually reducing the noise,
the exact value function may emerge. In the second case,
it is considered better [16] to first learn the task assum-
ing less noise (i.e. a weaker adversary), and gradually
increase its effect.

3) Modifying internal parameters: Many algorithms are
“parametric”, in the sense that they require a-priori
setting of some parameters (e.g. number of neurons in
an artificial neural network), independently on the actual
task data. For such algorithms, one can often find some
heuristics to determine an appropriate value for such a
parameter. However, in some cases greater efficiency
can be achieved if a schedule is set to gradually alter
the value of such a parameter. A classic case for this
category is simulated annealing, where a “temperature”
parameter is gradually decreased, allowing the system to
overcome local extrema. In RL, scheduling the learning
rate is considered a standard approach [17]. A more
interesting example is the work of Fasel [18] which
presents an additive boosting mechanism whereby new
elements are gradually added to the parametrization of
the likelihood model.

3This modeling choice often serves in cases where there is discrepancy
between the training model and the runtime environment, for example in
model-based learning for real, physical robots. In these cases, the unmodeled
and mismodeled dynamical effects are regarded as noise.



4) Modifying the initial state: In many goal-based tasks,
the optimal policy is simpler to learn when the initial
state is close to the goal, and becomes progressively
harder for states farther from the goal. This is the case
because the effective delay between an action and its
consequence is short. The optimal solution, then, can
be learned by “growing” the solution out from the goal
state towards the rest of the state space volume, or
any portion of it. Once the optimal policy is learned
in the immediate vicinity of the goal, another initial
state, slightly farther from the goal, can be learned more
easily - the agent can reach the goal by first reaching
one of the previously-learned states, and following the
previously-learned policy from there. Such a controlled
interaction reduces the risk of prolonged exploration
and aimless wandering. One algorithm that employed
such an approach for value function approximation in
deterministic MDP’s was the GROW SUPPORT by Boyan
and Moore [19].

5) Modifying the action space: Since the number of

possible policies grows exponentially with the number
of possible actions, limiting the set of possible actions
generally makes for an easier optimization problem.
Such a modification is often coupled with modifying
the state space, and as such it is related to the second
category above.
One example from developmental psychology for this
class of shaping is the way infants lock some joints in
their arm when learning to do a certain motion, so as to
temporarily limit the number of degrees of freedom of
their arm, and make the task more tractable [20], [21]. In
RL, Marthi [22] discusses an algorithm called automatic
shaping, whereby both states and actions are clustered
to form an abstracted task. The value function of the
abstracted task then serves as a rich reward function for
the original task.

6) Extending the time horizon: Since the formulation
of the RL domain involves the integration of the re-
ward into the future along some time horizon, we
can consider a homotopy that gradually extends the
time-horizon parameter (or, equivalently, decrease the
discounting factor). This idea lies at the heart of the
VALUE ITERATION algorithm [23], where the optimal
value function is estimated using a series of evaluations
of extending lengths. First, the value function for a single
step through the dynamical system is evaluated; then,
it is used in an evaluation of the value function for a
two-step interaction; and so forth. Another application
of this idea was presented in [15], where the pole-
balancing task was solved by gradually extending the
time horizon and re-approximating the value function,
taking the previous value function as an initial guess.

IV. RELATED WORK

Our central claim in this paper is that shaping is an iterative,
supervised process, and that this property should be preserved

when this notion is rendered computationally. This view is
under dispute in the RL community, and some of the most fa-
mous works on computational shaping consider only the static,
one-task case of a rich reward function: Randlgv and Alstrgm’s
work on bicycle riding [24] and Ng’s work on autonomous
helicopter control [25] both used the term ’shaping’ to refer
to a static, rich-reward problem. Optimal design of reward
functions has been studied before (e.g. Matari¢ [26]), and it
is clear that a well-designed reward function may facilitate
learning, promote faster convergence, and prevent aimless
wandering. Also, as pointed out by Laud [27], if the optimal
value can be provided as a reward, the RL task successfully
collapses to greedy action selection. However, we suggest that
the notion of shaping goes well beyond merely using a rich
reward scheme.

On the other hand, many other papers highlighted the
iterative nature of shaping: Kaelbling, Littman and Moore
[5], and Sutton and Barto [4] both consider shaping as an
iterative scheme, independently from considerations of reward
function design. Asada [28] referred to such iterative schemes
as learning from easy missions (LEM).

Several other works are concerned with computational shap-
ing. Dorigo and Colombetti, in their book “Robot Shaping”
[29], suggested to import behaviorist concepts and method-
ology into RL, and discussed a model for automatic training
of an RL agent. In the scheme they consider, the automatic
trainer has an abstracted specification of the task, and it
automatically rewards the agent whenever its behavior is a
better approximation of the desired behavior. This work is
often cited as a prime example of computational shaping,
but its impact is nonetheless limited we could find no papers
that actually employ their proposed method of employing an
automatic trainer.

Kaplan et al. [30] discuss the case of human-robot interac-
tion, where the reward is provided by a human observer/trainer.
The trainers may alter their criteria for providing reward, so
as to shape the desired behavior through successive approxi-
mations.

Konidaris and Barto [31] consider a case they title au-
tonomous shaping, where the tasks in the shaping sequence
share similar dynamics and reward scheme, but obstacle and
goal position is altered. There is no deliberate ordering of the
tasks from easy to hard, and the learning agent is meant to
generalize from the different instances, and create a robust
representation of the solution.

Finally, in Tesauro [32], learning took place through self-
play between two copies of the same agent. This guaranteed
that at every stage, the agent faced an opponent of optimal
strength — not too strong, and not too weak. That work has
been cited as an example for shaping, but we claim that it is
better described as an adaptive exploration of task space, and
as such, falls outside the realm of strictly supervised shaping.

V. RESEARCH AGENDA

One possible research direction is the identification of
certain shaping invariances. Ng’s method of potential function-



based enriching of the reward function [25] was shown by
Wiewiora [33] to be equivalent to a modification of the initial
state distribution. While both these works consider the static,
one-task case, it might be the case that such invariant relations
exist between some of the categories discussed in the previous
section.

Issues of designing shaping protocols have implications for
representational considerations. In order for shaping to work,
the solution to one domain has to inform the initial approach
to the next domain in the sequence. This implies that the rep-
resentation used should facilitate knowledge transfer between
subsequent tasks. This subject is the focus of contemporary
study [34].

We believe that this paper is the first to discuss the link
between shaping and homotopy-continuation methods. The
metaphor of a shaping sequence as a trajectory in the high-
dimensional space of all RL tasks may allow the introduction
of advanced continuation methods to the study of RL learning
and shaping. Currently, the biggest gap between shaping and
homotopy-continuation methods is that continuation methods
often relate to the continuous nature of the homotopy tra-
jectory, while all the shaping methods discussed above jump
discretely between the tasks in the shaping sequence. We hope
to bridge this gap in future work.

In conclusion, we believe that some sort of a continuation
method (such as shaping) is imperative to tackle any RL
domain of real-life difficulty, of high dimensionality and
impoverished reward. Many of the interesting RL tasks are
impossible to solve directly, and shaping may well be the only
viable way to make them tractable.
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