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Abstract—For humanoid robots, the skill of gaze following
is a foundational component in social interaction and imitation
learning. We present a robotic system capable of learning the gaze
following behavior in a real-world environment. First, the system
learns to detect salient objects and to distinguish a caregiver’s
head poses in a semi-autonomous mannner. Then we present
multiple scenes containing different combinations of objects and
head poses to the robot head. The system learns to associate
the detected head pose with correct spatial location of where
potentially “rewarding” objects would be using a biologically
plausible reinforcement learning mechanism.

Index Terms—gaze following, joint attention, actor-critic rein-
forcement learning, habituation, human-robot interaction

I. INTRODUCTION

Gaze following is the ability to shift one’s gaze to the lo-

cation where another agent is looking. Developmental studies

show that infants are not born with it but the skill emerges

during the first two years of life [1], [2]. Researchers in

cognitive science and developmental psychology consider gaze

following to be one of the foundational components of social

interaction and learning in humans. An experimental study also

showed strong positive correlation between gaze following at

early age with the subsequent language scores at later ages [3].

The skill is also crucial for humanoid robots to learn and

obtain skills through the social interaction with a caregiver as

opposed to the laborious programming of individual behaviors.

This paper is our continued effort to build an intelligent

robotic system capable of learning by interacting with a human

caregiver [4]. In our previous work, we proposed a compu-

tational model of how infants may acquire gaze following

skills through a biologically plausible reinforcement learning

scheme [5], [6], [7]. According to the model, the infant learns

to locate salient, i.e. rewarding, targets by utilizing the head

pose and gaze direction of the caregiver via an actor-critic

reinforcement learning scheme. The model replicated well the

development of gaze following in human infants observed by

Butterworth and colleagues [1], [2].

In this paper we present an implementation of our model

on a robot head. The robot learns gaze following through the

interaction with a caregiver in a real-world environment as

shown in Fig. 1. Learning is divided into two stages. First the

robot learns to detect certain objects and distinguish different

head poses. Second, we expose the robot head to various
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Fig. 1. A typical experiment scene setup. The caregiver is holding an object
and attending to it. The robot is looking at the caregiver. The solid line
indicates the boundary of the field of view (FOV) of the infant in [5], the
dotted lines of the robot head. Our robot head has much narrower FOV (±30)
compared to that of the infant (±90).

scenes containing different combinations of objects and head

poses. The robot learns to associate the detected head pose

with the necessary motor actions to look at salient object

and thereby maximize its reward. After the training, we test

the performance of the system. An overview of the complete

system is shown in Fig. 3.

Several other groups have also proposed models of the

development of gaze following behavior. We will briefly

review some of their work.

A. Review on previous work

Matsuda and Omori [8] used a temporal-difference (TD) re-

inforcement learning scheme for learning joint visual attention.

In their simulation, the caregiver first attends to the infant’s

face. When the infant makes eye contact with the caregiver,

the caregiver shifts its gaze toward some toy. If the infant

follows the caregiver’s gaze correctly, the observer operates

the attended toy to make a movement which serves as reward



Fig. 2. Illustration of two ambiguous situations. Distractor object (red box)
appears either behind (left) or in front of (right) the caregiver’s gaze direction.
Blue cone is the target object that the caregiver is looking at.

for the infant. Their model is limited in the sense that the

infant only gets reward from the moving object operated by

the observer. Also the caregiver’s face is treated separately

from the objects and does not lead to any reward.

Nagai et al. [9], [10] used face edge features and motion

information (optical flow) to estimate the sensorimotor coor-

dination between these two inputs and the motor output using

two separate neural networks. A coordinator module computes

the average motor output from the outputs of the two neural

networks. In other words, the system associates the pan and

tilt angles of a caregiver to the target object within the robot’s

FOV. Their model does not utilize the depth information (i.e.

distance from the robot to the object) and thus can not handle

ambiguous situations where an object appears in robot’s gaze

direction that may not be located within the caregiver’s gaze

direction as shown in Fig. 2 whereas our system does use this

depth information and can handle the situations mentioned

above correctly.

Shon et al. [11], [12] presented a probabilistic model of

gaze imitation where estimated gaze vectors are used in

conjunction with the saliency maps of the visual scenes to

produce maximum a posteriori (MAP) estimates of objects

looked at by the caregiver. The fused saliency map is based

on the bottom-up saliency model proposed by Itti et al. [13]

combined with the top-down saliency map representing the

preferences for objects learned from repeated experiments with

a specific caregiver. To our knowledge, their work is the first

to integrate the saliency learning mechanism into the gaze

following framework. Still, a biologically plausible account

of the development of gaze estimation skill is missing from

their work.

Doniec et al. [14] used reaching and pointing gestures to

change the problem of development of gaze following behavior

into a supervised learning problem. Their proposed model is a

two-stage learning process. First the robot learns to reach and

point to some target. Then the robot uses its pointing skills to

guide the caregiver’s attention to a specific object in the scene.

This idea of infant guiding the attention of the caregiver would

work well in the cases when the object is close to the infant so

that the pointing does not become ambiguous. Also it would

be useful when the infant wants to transfer his intention to the

caregiver. However their model does not address the issues
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Fig. 3. An overview of the complete system.

such as following the caregiver’s gaze to an object outside the

infant’s FOV or caregiver not following the infant’s gestures.

The issues mentioned above are handled by our model.

The rest of the paper is organized as follows. Section II first

explains the visual processing, and then the reinforcement

learning mechanism, and lastly how they are integrated. Sec-

tion III describes the experiment setup and the results. The

last section discusses the results and some possible directions

for future work.

II. SYSTEM DESCRIPTION

In our previous works [5], [6], [7] we proposed a com-

putational model of the development of the gaze following

behavior and demonstrated simulation results that validated

the plausibility of our model. Here we have implemented our

model on our lab’s robot head platform and we show the

feasibility of our model in a real-world environment.

For a robotic implementation one also needs to handle the

visual processing of the salient objects and head poses. The

object processing module detects and estimates the depth or

distance of the detected object. The face processing module

detects faces, distinguishes different head poses and estimates

the depth of the caregiver’s face. Outputs from the two visual

processing modules along with the information obtained from

the motor control module are used to compute a state vector

u which comprises a body-centered saliency map s and the

caregiver’s head pose h, shown in Fig. 4. This state vector

is fed to the reinforcement learning module and the module

computes which action a to take to maximize its reward, which
is just the saliency of the object itself. Once an action is

complete, the reward r is computed and the internal parameters
are updated accordingly.

A. Object processing module

The goal of the object processing module is to detect salient

objects in the scene and estimate objects’ depth. We picked a

couple of household objects and trained the module to detect

them as salient versus any other objects that may also be

present in the scene. Objects are learned in a semi-autonomous

fashion as in [4] where we simply show the objects one at a

time to the robot head. The robot head detects the presence



of the object in its visual field and starts to actively track

the object while the caregiver shows the object in varying

poses and scales. Vergence control movements put the object at

approximately the same location in both left and right images

and stereo information is used to segment the object from the

background. A collection of these segmented images is used

for learning the object representations which is a collection of

2-dimensional views of an object.

Harris corner detectors are used for interest point/region

detection and 40-dimensional Gabor wavelets are used as local

features or texture descriptors. We cluster the segemented

features to create a fixed size dictionary using the K-means

algorithm. The Hough transform is used for encoding the

feature positions in each view of the object. The approximate

kd-tree algorithm is used for fast nearest neighbor search of

features in the dictionary. Object detection is carried out using

the left image. Once an object is detected, a set of points

belonging to the detected object in the left image is compared

to all corner points found in the right image to compute the

stereo disparity in image pixels. We fixed the two cameras

in the parallel axis position. So the depth of the object is

computed simply using the equation:

d = −f
b

z
(1)

where d is the horizontal pixel disparity in a single left-right
image pair, f is the focal length of the camera, b is the base
distance between two cameras and z is the estimated depth of
the object.

Note that the module only computes the relative location

of the object from the center of the visual field. Later, at

the integration stage, we will combine this relative location

information with the output from the motor system to compute

the body-centered spatial position of the detected object.

This pre-training of salient objects can be omitted if we

assume that the objects are placed far apart from each other

such that the robot can easily detect an object based on its

spatial location. However in our model, multiple objects can

appear in the close proximity making it almost impossible

to distinguish an object from the other just using spatial

information.

B. Face processing module

The goal of the face processing module is to detect a face,

distinguish different head poses and estimate depth. Here we

do not need to estimate the gaze direction. We only need to

distinguish one pose from the other. Again we use the semi-

autonomous approach [4] to train the face processing module.

The processing is divided into three stages, detection, pose

discrimination and depth estimation. In the first stage, the

module detects the presence of a face. We used the face

detection function provided in the OpenCV library. Face poses

are learned in a similar manner to the object processing

module described above. We use scale-covariant Maximally-

Stable Extremal Regions (MSER) operator as the interest

point/region detector instead of the Harris detector because

Fig. 4. Actor-critic reinforcement learning system. Gray areas in s indicates
that the robot is unable to see areas beyond ±240 degrees. In h, it shows
that the head pose discrimination is done approximately within ±90 degrees.
Again gray areas in m indicate the spatial bin locations that the robot is
unable to reach.

faces do not contain enough corner-like points which can be

reliably detected through varying poses and scales [15].

The reason that we use our own face processing system

instead of using an off-the-shelf head pose estimation system

is first we do not need the full gaze direction estimation system

which would also make the model biologically unplausible.

After all, the gaze direction information is what the robot

learns by interacting with the caregiver! Second, depending

on the experimental parameters, it is very easy to increase or

decrease the number of head poses that the system can distin-

guish since we are using the semi-autonomous approach [4].

Note that our face processing module has not been tested with

multiple experimenters since that is not the main point of this

paper.

C. Reinforcement learning module

Gaze following behavior is learned using a simplified ver-

sion of the biologically plausible actor-critic reinforcement

learning scheme described in [16], [6]. The state vector u

from the visual system serves as an input to an actor-critic

reinforcement learning module that controls the action as

shown in Fig. 4. The state vector has size Ns which is sum

of the size of the spatial bins Na plus the number of head

poses. Action a is a gaze shift to one of Na spatial regions

represented in a body-centered coordinate system. Na is the

total number of possible actions that the system can take and

is also identical to the number of spatial bins present. Reward

ra(t) is obtained as the saliency of the position to which
attention is directed after a gaze shift has been made and the

saliency map s has been updated.

The critic’s role is to estimate the value of the current state

v(t) and compute the temporal difference error δ(t) using the
estimated value of the current state v(t) and the reward ra(t)
of taking an action a. The actor decides which action to take
in a probabilistic fashion using the softmax decision rule:

P (a) =
exp(βma)

∑Na

a′=1
exp(βma′)

(2)

Each action a, a = 1, ..., Na gets assigned a probability



Fig. 5. Five different head poses and five objects used in the experiment.

value computed by the equation above where ma is the action

value corresponding to action a computed using m = Mu

and β is the inverse temperature parameter that controls the
amount of exploration vs. exploitation.

Weight vector w is used by the critic to estimate the value

of the current state v(t). It is updated according to:

w(t + 1) = w(t) + ηδ(t)u(t) (3)

where η is the learning rate.
The weight matrix M used by the actor to compute action

values m is updated according to:

Ma′b(t + 1) = Ma′b(t) + η(δaa′ − P [a′; u(t)])δ(t)ub(t) (4)

where P [a′; u(t)] is the probability of taking action a′ in state

u(t) and δaa′ is the Kronecker delta function defined as 1 if

a = a′ and 0 otherwise.

Note that increasing the number of states in reinforcement

learning may cause an explosion in the total number of itera-

tions it takes to succesfully complete the training. Accelerating

the reinforcement learning is an interesting research topic in its

own right but was not addressed here since it was not required

at this stage.

D. Integration

The integrated system consists of the three modules de-

scribed in previous subsections plus the motor control subsys-

tem as shown in Fig. 3. The integrated system also internally

keeps a memory of object labels, locations and their saliencies

that it has seen. Memory decay and habituation play an

important role in the learning of gaze following. Outputs

from two visual processing modules along with motor position

are used to compute saliency map s = (s1, ..., sNa
)T which

indicates the presence of visual saliency in a body-centered

coordinate system around the robot head. The saliency or

activation si at location i is computed as:

si(t) =

{ ∑

j fj(t)φoj
(t) : location i visible

dsi(t − 1) : location i not visible
(5)

where d is a memory decay speed parameter. The sum runs
over objects j present in location i including the caregiver.

φoj
(t) is the habituated saliency of object j. fj(t) is a foveation

factor defined by:

fj(t) = exp(−θ2

oj
/σ2

F ) (6)

where θoj
is the angle between the robot’s line of sight and

the object j and σF determines the range of attenuation.

Habituation further decreases the perceived saliency according

to:

dφoj
(t)

dt
=

αH

τH

(Φoj
− φoj

(t)) −
1

τH

Soj
(t) (7)

where Φoj
is the unhabituated original saliency of object j and

τH is a time constant for specifying the rate of habituation. The

saliencies of the objects Φoj
are drawn from an exponential

probability distribution with mean equal to 1 as in [5]. Soj
(t)

is equal to Φoj
if the robot is looking at object j at time t and

0 otherwise.

The saliencies of the caregiver and infant are set to 2 which

means most of the objects will have saliencies lower than

that of the infant or the caregiver. A real infant probably

uses more sophisticated saliency computation such as assign-

ing higher/lower values for food/non-food, mother/stranger,

etc, that may also depend on the internal state (e.g. hun-

gry/bored/sleepy) of the infant. Higher saliency values will

make it more likely to attend to the object for longer duration

of time whereas the robot will quickly loose interest in an

object with low saliency value.

III. EXPERIMENTS

Our model was tested on the 9 degrees of freedom (DOF)

robot head developed for studying development and learning

in the social context [17]. The robot has 2 CCD cameras

capable of capturing 640×480 resolution color images up to

30 frames per second. Each camera has approximately 60◦

horizontal and 40◦ vertical FOV. The robot’s neck is capable

of making ±90◦ horizontal movement. For this experiment,

we fixed the two cameras with parallel axes in order to make

depth computation easier. Since our robot head has limited

visual and motor capabilities compared to that of the model

infant in [5], we adjusted some of the experimental parameters.

A. Learning about objects and head poses

The experiment was carried out in two stages. First we

trained the two visual processing modules to detect “salient”

objects and distinguish different head poses in a semi-

autonomous manner as described in [4]. Our semi-autonomous

learning scheme makes it very simple to train the system.

For objects, the experimenter simply held the object in front

of the robot head and rotated it arbitrarily while the robot

detected, tracked, segmented and learned about the object.

500 left-right image pairs are captured for training of each

object. The system runs at roughly 10 frames per second so

capturing 500 image pairs takes about one minute. We chose

5 different household objects to be used as salient objects as

shown in Fig. 5. An identical object can appear multiple times

in our gaze following experiment setup as long as it appears

in different spatial locations.
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Fig. 6. Gaze following performance over training time. Error bars indicate
the standard error of the mean (10 simulations).

Similarly the experimenter presented his face to the robot

head at angles ±90, ±45, and 0. Starting from the angles

mentioned above, the experimenter rotated his head arbitrarily

but with care so the head poses do not cross the boundary.

Again 500 left-right image pairs are captured for training. Each

group of images are given labels such as ’Pose0’, ’Pose1’ and

so on without any explicit head direction information.

After training the two visual processing modules with the

captured 500 left-right image pairs per object or per pose, we

tested the recognition performance on the 100 left-right image

pairs captured separately for testing. For the face processing

module, a 4K feature dictionary was built using K-means

clustering. Recognition performance was 96.4%. For the object

processing module, the pose-invariant recognition performance

was 75.1% with a 64K feature dictionary. Low recognition

performance for the objects is due to the fact that objects

have several views such as back-side of a can or a box which

contains texts with small fonts that are hard to distinguish in

limited resolution images.

B. Learning the gaze following behavior

The second stage of the experiment the system learns the

gaze following behavior. One problem is that reinforcement

learning usually takes a large number of iterations to complete.

In our simulations in [5], it took 900K iterations or 125

hours of non-stop interaction if one would assume that one

iteration (gaze shift) takes half a second.

With the two visual processing modules combined, each

iteration took about 5 seconds. So even if the simulation runs

for 100K iterations, it would mean 139 hours of non-stop

interaction excluding the time it takes to reorganize the objects

around the room. Thus we found doing the experiment online,

although possible, to be cumbersome and difficult. So instead

we captured the scenes the robot sees when it is attending to

one of the Na spatial bins.

We divided ±120 degree horizontal range into 5 directions.

Depth ranges are divided into 3 regions at approximately 0.25,

0.5 and 0.75 meters. Objects placed further than 0.75 meters

appeared too small in the captured images and therefore were

not detected reliably. We captured multiple images of the same

spatial bin changing the object and head pose combinations.

While capturing and testing the detection using two visual

processing modules, we found out that the closer object often

blocked the view of the object behind it making detection

and depth estimation of the object behind difficult. To keep

things simple in the offline training, we assumed that the

robot only sees the front-most object when there were multiple

objects in the same viewing direction. Also our captured

scenes contained at most one object per spatial bin. The two

restrictions mentioned above are for easier experiment setup

and are not strictly necessary, however.

If not mentioned specifically, the experimental setup and pa-

rameters are identical to that of [5]. The objects are distributed

in a uniform distribution and not Gaussian. That is, it is equally

likely that an object appears in any of the spatial bins. The

total number of objects present in each scene is obtained from

a geometric probability distribution with average set to 1. Due

to the two restrictions mentioned above, the maximum number

of objects that the robot can perceive in one scene is 5 which

means objects are present in every viewing direction. Thus if

the average number of objects parameter NO was set to 4

like in [5], the system failed to learn the correct behavior

or associations between the head pose and the corresponding

motor actions.

Note that the robot only has 60◦ horizontal FOV compared

to 180◦ for the model infant in [5]. This means that our robotic

experiment is in some sense tougher than [5] since our robot

does not get the chance to learn the easier associations between

caregiver’s head pose and objects inside the FOV. It must learn

to associate to the objects outside its FOV from the start.

We ran the simulation for 100K iterations. Internal param-

eters for the reinforcement learning are stored every 5000

iterations. After the training we used these stored values to

test the performance of the system. We stopped the adaptation

of the parameters during the testing. Fig. 6 shows the gaze

following performance over the training time. Each trial started

with the caregiver and the robot looking at each other with

no objects present in the scene. Then the caregiver turned

his head to look at one randomly chosen bin location. If the

robot’s first head turn was consistent with the caregiver’s gaze

direction, it was counted as a correct movement. Performance

is measured as the proportion of correct movements in 100

test trials. Note that the robot’s movement or action is selected

based on the soft-max decision rule. The robot does not always

select the best action that produces the maximum expected

reward, but often chooses other actions to continue exploring

the environment. The test was repeated 10 times and the error

bars indicate the standard error of the mean.

We changed the value of β during the test trials. Larger
value of β resulted in more exploitation of trained knowledge
which in turn improveed performance as can be seen in

Fig. 6. However, large β during training can actually harm
the proper learning of the skills due to limited exploration of

the environment.

Fig. 7 shows the connection weights from a specific head



Fig. 7. Illustration of connection weights from the head pose to the action
values m. Caregiver is looking at 90◦ (left) and at 45◦ (right).

pose to corresponding action values m at iteration 50K.

With each head pose, several spatial bins get activated which

roughly correspond to the line of sight of the caregiver.

IV. DISCUSSION

In this paper we have presented a robotic system capable

of learning the gaze following behavior using a computational

model developed earlier. Some of the limitations of the robot

head made the problem more challenging. Nonetheless the

system learned to make correct associations between the

caregiver’s head pose and the corresponding motor actions.

Our goal is to provide a simple and parsimonious account of

many of the experimental findings about the development of

gaze following in human infants. Our discrete model shows a

proof of concept. In the future we may use more sophisticated

continuous space reinforcement learning schemes such as [18].

Since the reinforcement learning algorithm is slow, the

learning was carried out offline. But nothing stops us from

doing the training online as long as the experimenter can

rigorously repeat the experiment, perhaps sitting in front of

the robot head for days. We claim that the “long” training

time of a couple of days is not a crucial shortcoming since

a real infant would have ample time to interact and learn

from the caregiver during the first two years of his life. In

reality, additional cues such as motion of the caregiver’s face,

motion of the object (e.g. caregiver shaking the object) and

auditory or tactile sensory inputs such as the caregiver talking

to or touching the infant may be used to expedite the learning

process. Nagai [10] and Doniec et al. [14] have used some of

the additional cues mentioned above in their models. We did

not use the eye direction cue since we did not have a gaze

detection module readily available. But it it just an additional

piece of visual information that can be easily integrated into

our framework as shown in [5]. We hope to develop such a

module and integrate it into our robotic system in the future.

Our model solved many of the issues present in other

models such as gaze following to an object outside the FOV,

etc (see Section I). Our work captures the interplay of percep-

tual skills, reward-driven behavior learning, habituation and a

structured social environment in an integrated framework. Also

extending the internal world model to 3D space will not be a

problem. The face processing module can easily be enhanced

to distinguish changes in tilt angles as well as pan angles of

the caregiver’s head pose. Therefore we plan to extend our

model to 3D space in the future.

Our gaze following mechanism can also be used as a front-

end for our semi-autonomous learning framework [4]. Instead

of detecting the presence of an object based solely on its depth

as in [4], the robot can attend to and learn about the object

that the caregiver is looking at.

An interesting open question is whether the ability to

distinguish different head poses is a prerequisite for the

development of gaze following behavior or whether the two

skills develop jointly and simultaneously. Ultimately, instead

of carrying out the experiment in multiple stages, we want

to build a system where skills for distinguishing different

head poses, learning about salient objects, and gaze following

are developing concurrently and where the progression of an

individual skill influences the learning of the others.
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