
Towards a Robot App Store
Brian Gerkey

Willow Garage



The power of apps
• Shared platform provides system 

services, distribution & installation 
mechanism

• Creative users develop and publish 
novel applications

• Platform functionality explodes (and 
some people even make money)



What's a robot app?

• In the near future

• Eventually

• For now:
– demonstrations
– experiments
– challenge entries (!)

MapIt!
Autonomous  
exploration and 
mapping for any indoor 
environment.

Click to Buy ($49.99)



Outline

• ROS

• Open Source
• Licensing
• Libraries
• Modularity
• Federated development



ROS (http://ros.sf.net)
• What is ROS? 

– Meta operating system for robotics 

– System for obtaining, building, writing and running code 
across multiple computers 

– Designed around mobile manipulation systems



ROS (http://ros.sf.net)

Example: opening doors and plugging in

http://pr.willowgarage.com/ wiki/Milestone2/Resul ts_2009-05-29_I ntegrated_(Trial_Procedure)



Open Source

• Core components should be Open
• much research to be done, and researchers need to see 

(and change) how things work
• core system not perfect; users' patches are efficient fixes

• Example core components:
– build [cmake, pkg-config | rospack, rosbuild]
– launch [bash | roslaunch]
– communication [glibc | roscpp, rospy]
– analysis [top, netstat | rostopic, rxgraph]
– debugging [gdb | roswtf]



Open Source
• Code used to make claims in papers should be 

Open
– key part of experimental design
– necessary to replicate, refute, or extend results

• How? (*)
– include versioned download details in the paper

• SVN URL + revision; Git ref + hash

– can't share physical state?
• share configuration info for a well-known simulator

[*] See Wawerla & Vaughan, RSS 2009 workshop on experimental practice



Licensing

• Core components should support commercial 
use, without license constraints on applications
– glibc: LGPL
– ROS core: BSD

• Mid-level components will be more widely 
used if they follow suit
– more people will improve upon them, too
– most ROS packages: BSD or Apache

• Applications: license as appropriate



Libraries

• Implement useful functionality 
as a library, independent of any 
robot framework
– imagine the developer who likes 

your functionality but doesn't 
like your framework

• Bind your library into the 
framework(s) you use
– bindings should be thin

amcl library

ROS bindings

amcl library

Player bindings



Libraries

• Issues
– dependencies
– data structures
– control loops / state machines
– version hell



Modularity

• Break functionality up into 
small pieces

• Plan for reuse of each piece
– expose a well-defined interface

• Modules provide natural 
license boundaries

• Issues:
– maintenance, QA, release 

burden, dependency hell



Federated development

• Q: “How do I contribute?”
– A: Publish your code in a publicly-accessible place 

(e.g., SourceForge, Google Code)

• Avoid single gateway for (re)distribution of 
code
– authors retain control, get credit
– authors choose licenses, development policies, 

release schedules
– scale to worldwide development



Federated development

• Known ROS repositories (12)



Federated development

• Issues:
– finding available code
– avoiding duplication of work
– working from multiple repositories
– quality control



Hypothesis

• Shared, Open infrastructure + modular 
libraries + commercial-friendly licensing + 
federated development =
– shared engineering burden
– accelerated system development
– better scientific practice
– transferable challenge results
– vibrant business ecosystem

• and, eventually...a Robot App Store.



Acknowledgements

• The ROS team:
– Lead: Morgan Quigley
– Josh Faust, Ken Conley, Rob Wheeler, Tully Foote, 

Jeremy Leibs, Bhaskara Marthi, Rosen Diankov

• The STAIR project: Andrew Ng & Co.
• Everybody at Willow
• The fledgeling ROS community


