Talk presented at NEMS Friday, May 30, 2008 Brown University, RI

Bearing-Only Pursuit

Nikhil Karnad karnan@cs.rpi.edu Volkan Isler isler@cs.rpi.edu

Department of Computer Science Rensselaer Polytechnic Institute (RPI), USA

Introduction

- Pursuer tries to capture an evader
- Evader tries to avoid capture

- Pursuit-Evasion, Cop-Robber, Lion-Man
- Assumes knowledge of complete information
- Need to specify arena, moves, notion of capture

Research Overview

- Pursuit-evasion games
 - Role of sensing information
 - Discrete and continuous domains
 - Complex environments
- Adversarial perspectives
- Previous work [TCS GRAASTA'08]
 - Full-visibility pursuer wins in finite time \rightarrow P strategy
 - k-visibility pursuer: exponential time \rightarrow E strategy

Problem Statement

- Single pursuer, single evader
- Positive (1st) quadrant
- Turn-based, discrete time, continuous space
- Equal maximum velocities
 - Can move same maximum step size in a single round
- Evader: has complete information
- Pursuer: limited to bearing-only sensor

Motivation

- Mobile robots with monocular vision systems
- Applications in
 - Tracking
 - Surveillance
 - Search and rescue

Game model

- Proceeds in rounds
- Sense → Evader moves → Sense → Pursuer
 moves

• Termination: $|PE| \le c$

Bearing-Only Pursuit: Karnad and Isler (RPI)

Complete information

- Lion-and-Man problem
 - R. K. Guy, David Gale, Solution by Sgall¹
- Pursuer with complete information wins
 - Stays on the radius of a growing circle with a fixed center
 - Initial conditions and invariant

¹ J. Sgall: A solution of David Gale's man and lion problem, Theoretical Comput. Sci, 259(1-2):663-670, 2001.

Invariant 1

Must be satisfied by any pursuer strategy

Sgall: Lion's strategy

With a bearing-only sensor?

Sgall's lion strategy does not work directly

Conservative estimate

Play Sgall's lion strategy w.r.t. *conservative* evader estimate Preserves Invariant 1

Our pursuit strategy

• Play lion's strategy w.r.t. conservative estimate

Our strategy: the switch

- Sometimes lion's move does not exist
 - Switch to guarding phase

Our strategy: guarding phase

• Either catch up, preserving progress

Capture time

- Lion's game (T_G)
 - Fixed center
 - Finite capture time (Sgall)
- Whenever the switch to guarding phase is made (T_)

- Game bounded by $\max\{\mathbf{x}_{p}, \mathbf{y}_{p}\} \leq \max\{\mathbf{x}_{o}, \mathbf{y}_{o}\}$

• Total =
$$T_{G}$$
 · T_{L}

Effect of capture distance

- When $c \ge 1$: pursuer wins
- When c < 1
 - Lemma: Exact capture is not possible with high probability
 - Set c = 0
 - Provide evader strategy that works against any pursuer strategy

Evader strategy

- Randomized
- Exploits the need for pursuer to maintain Invariant 1

Conclusions

- Pursuer with complete information wins, but with just the bearing-only information, he can get to within the step-size from the evader
- For capture distance $c \ge 1$, pursuer wins
- Capture time
- For c = 0, the evader wins w.h.p.
- Future work
 - Implementation on mobile robot test bed
 - Incorporate uncertainty

Acknowledgments

- The authors thank Nilanjan Chakraborty for his help
- This work was supported by the grants
 - NSF CCF-0634823,
 - NSF CNS-0707939 and
 - NSF IIS-0745537

Thank you for your time!

Contact: Nikhil Karnad karnan@cs.rpi.edu http://rsn.cs.rpi.edu/pe.html