Robotic Routers (joint work with Volkan Isler)

Onur Tekdas

Rensselaer Polytechnic Institute

May 22,2008

Motivation Problem definition Working Example

Table of contents

Motivation

- Motivation
- Is mobility useful?

2 Problem definition

- Problem definition
- Motion models

3 Working Example

- Connectivity model
- Static router network
- Adversarial trajectory

4 Algorithms

- Known user trajectory algorithm
- Adversarial user trajectory algorithm

Motivation Is mobility useful?

- Imagine a user working in a large farm and needs network connection
- **Standard Solution:** A network of static wireless routers which covers the entire environment
 - A small subset of routers are **active** in a given time
 - This solution is **costly** for large environments

Motivation Is mobility useful?

- Imagine a user working in a large farm and needs network connection
- Standard Solution: A network of static wireless routers which covers the entire environment
 - A small subset of routers are **active** in a given time
 - This solution is **costly** for large environments

Motivation Is mobility useful?

- Imagine a user working in a large farm and needs network connection
- Standard Solution: A network of static wireless routers which covers the entire environment
 - A small subset of routers are **active** in a given time
 - This solution is **costly** for large environments
- Alternative Solution: A *small number* of robots with wireless communication capabilities can *autonomously* deploy themselves and reconfigure to maintain connectivity according to the location of the user

Motivation Is mobility useful?

- Imagine a user working in a large farm and needs network connection
- Standard Solution: A network of static wireless routers which covers the entire environment
 - A small subset of routers are active in a given time
 - This solution is **costly** for large environments
- Alternative Solution: A *small number* of robots with wireless communication capabilities can *autonomously* deploy themselves and reconfigure to maintain connectivity according to the location of the user

Motivation Is mobility useful?

Motivation

user

- Imagine a user working in a large farm and needs network connection
- Standard Solution: A network of static wireless routers which covers the entire environment
 - A small subset of routers are active in a given time
 - This solution is **costly** for large environments
- Alternative Solution: A *small number* of robots with wireless communication capabilities can *autonomously* deploy themselves and reconfigure to maintain connectivity according to the location of the

Motivation Is mobility useful?

Motivation

user

- Imagine a user working in a large farm and needs network connection
- Standard Solution: A network of static wireless routers which covers the entire environment
 - A small subset of routers are **active** in a given time
 - This solution is **costly** for large environments
- Alternative Solution: A *small number* of robots with wireless communication capabilities can *autonomously* deploy themselves and reconfigure to maintain connectivity according to the location of the

Motivation Is mobility useful?

Motivation

user

- Imagine a user working in a large farm and needs network connection
- Standard Solution: A network of static wireless routers which covers the entire environment
 - A small subset of routers are active in a given time
 - This solution is **costly** for large environments
- Alternative Solution: A *small number* of robots with wireless communication capabilities can *autonomously* deploy themselves and reconfigure to maintain connectivity according to the location of the

Motivation Is mobility useful?

Is mobility useful?

- In this example, let us assume that the connectivity between two nodes is **visibility based**
- We use a **base station** as the access point of mobile router network to WAN
- In both figures: User + Mobile Station
- In left figure, one mobile router is sufficient while ⁿ/₃ static routers are necessary
- In **right figure**, if robot is not faster than user mobility may not gain any advantage

Problem parameters and definition

- The location of the base station
- The initial locations of robots
- The motion capabilities of robots (i.e. speed)
- The connectivity model between nodes
 - We present algorithms work for any connectivity model
 - The user is connected if it is connected to the base station through point-to-point links in the mobile router network
- The motion model of the user (i.e. speed and how it moves)

Problem definition

Given parameters above find robot strategies which **maximizes the connection time** of the user

Problem definition Motion models

Our contributions

In this work

- We focus on single user case
- We consider the motion models below and present **optimal solutions** for these models

Known Trajectory:

- The user trajectory is known in advance
- For example, user can be a mobile robot which follows a predetermined trajectory
- Adversarial Trajectory:
 - The user tries to break the connectivity as quickly as possible
 - This ensures that whether the mobile router network can maintain the connectivity for any possible user trajectory

Problem definition Motion models

Our contributions

In this work

- We focus on single user case
- We consider the motion models below and present **optimal solutions** for these models

Known Trajectory:

- The user trajectory is known in advance
- For example, user can be a mobile robot which follows a predetermined trajectory

• Adversarial Trajectory:

- The user tries to break the connectivity as quickly as possible
- This ensures that whether the mobile router network can maintain the connectivity for any possible user trajectory

Problem definition Motion models

Our contributions

In this work

- We focus on single user case
- We consider the motion models below and present **optimal solutions** for these models

Known Trajectory:

- The user trajectory is known in advance
- For example, user can be a mobile robot which follows a predetermined trajectory

• Adversarial Trajectory:

- The user tries to break the connectivity as quickly as possible
- This ensures that whether the mobile router network can maintain the connectivity for any possible user trajectory

Connectivity model Static router network Adversarial trajectory

Working Example

• Our network only covers a small portion of floor hence the robotic router network is the only feasible solution

Figure: Floor plan

Connectivity model Static router network Adversarial trajectory

Connectivity model

- This figure shows the connection between two robots
- The fading red circle shows the connectivity strength (actual measurement)
- **Connectivity model** is based on geodesic distance but we penalize corners

Figure: 1

Connectivity model Static router network Adversarial trajectory

Static router network

• We need **four** static routers for entire coverage (baseline)

Connectivity model Static router network Adversarial trajectory

Adversarial user trajectory

• In the following figures:

For the following user trajectory one mobile router is not sufficient

user

• User trajectory:

Connectivity model Static router network Adversarial trajectory

Adversarial user trajectory

- Using binary search on number of robots, we can find the minimum number of required robots to maintain the connectivity for adversarial user.
- In this particular problem, minimum number of required robotic router is two
- User trajectory:

Known user trajectory algorithm Adversarial user trajectory algorithm

Known user trajectory algorithm

- This is a dynamic programming algorithm
- The table is constructed using the C function below, where:
 - q and q' is the current and next location configuration of robots
 - t is the time step and u(t) is the position of the user at t

$$C(q, t) = \max_{\substack{q' \in N_c(q)}} C(q', t - 1) + d$$

where $d = \begin{cases} 1 & \text{if } u(t) \text{ is connected by } q \\ 0 & \text{otherwise.} \end{cases}$
$$C(q, 1) = \begin{cases} 1 & \text{if } u(1) \text{ is connected by } q \\ 0 & \text{otherwise.} \end{cases}$$

 max C(q, T) is the maximum connection time (T is the end time of the user trajectory)

Known user trajectory algorithm Adversarial user trajectory algorithm

Adversarial user trajectory algorithm

Algorithm

AdversarialUserTrajectory

1:
$$\forall q_u \forall q \ E[q_u, q] \leftarrow \infty$$

2: $\forall q_u \forall q$

- 3: if q_u is not connected in q then
- 4: $E[q_u, q] \leftarrow 1$
- 5: end if

6: for
$$k = 2$$
 to n^{m+1} do

7: $\forall q_u \forall q$

8: if
$$\min_{\substack{q'_u \in N_u(q_u) \ q' \in N_c(q)}} \max_{\substack{q' \in N_c(q) \ k = 1}} E[q'_u, q'] = k - 1$$

then

9:
$$E[q_u,q] \leftarrow k$$

- *10:* end if
- 11: end for

nur	Tekdas	Robotic	Routers
mun	TERUas	Robotic	Touters

Known user trajectory algorithm Adversarial user trajectory algorithm

Adversarial user trajectory algorithm

Algorithm

AdversarialUserTrajectory

1:
$$\forall q_u \forall q \ E[q_u, q] \leftarrow \infty$$

2: $\forall q_u \forall q$

- 3: if q_u is not connected in q then
- 4: $E[q_u, q] \leftarrow 1$

end if

5: end if

9:

10:

6: for
$$k = 2$$
 to n^{m+1} do

 $E[q_u, q] \leftarrow k$

7: $\forall q_u \forall q$

11: end for

8: if
$$\min_{\substack{q'_u \in N_u(q_u) \ q' \in N_c(q)}} \max_{\substack{E[q'_u, q'] = k-1}} E[q'_u, q'] = k-1$$

then

			2	3	4	5
ro	bot	1	2	3	4	5
	1	∞	∞	1	1	1
	2	∞	∞	∞	1	1
	3	∞	∞	1	1	1
	4	∞	∞	1	1	1
	5	∞	∞	1	1	1

Known user trajectory algorithm Adversarial user trajectory algorithm

Adversarial user trajectory algorithm

Algorithm

AdversarialUserTrajectory

1:
$$\forall q_u \forall q \ E[q_u, q] \leftarrow \infty$$

2: $\forall q_u \forall q$

- 3: if q_u is not connected in q then
- 4: $E[q_u, q] \leftarrow 1$

end if

5: end if

9:

10:

6: for
$$k = 2$$
 to n^{m+1} do

 $E[q_{\mu},q] \leftarrow k$

7: $\forall q_u \forall q$

11: end for

8: if
$$\min_{\substack{q'_u \in N_u(q_u) \ q' \in N_c(q)}} \max_{\substack{q' \in N_c(q)}} E[q'_u, q'] = k - 1$$

then

Known user trajectory algorithm Adversarial user trajectory algorithm

Adversarial user trajectory algorithm

Algorithm

AdversarialUserTrajectory

1:
$$\forall q_u \forall q \ E[q_u, q] \leftarrow \infty$$

2: $\forall q_u \forall q$

- 3: if q_u is not connected in q then
- 4: $E[q_u, q] \leftarrow 1$
- 5: end if

6: for
$$k = 2$$
 to n^{m+1} do

7: $\forall q_u \forall q$

8: if
$$\min_{\substack{q'_u \in N_u(q_u) \ q' \in N_c(q)}} \max_{\substack{q' \in N_c(q) \ k = 1}} E[q'_u, q'] = k - 1$$

then

9:
$$E[q_u, q] \leftarrow k$$

- *10:* **end if**
- 11: end for

Known user trajectory algorithm Adversarial user trajectory algorithm

Adversarial user trajectory algorithm

Algorithm

AdversarialUserTrajectory

1:
$$\forall q_u \forall q \ E[q_u, q] \leftarrow \infty$$

2: $\forall q_u \forall q$

- 3: if q_u is not connected in q then
- 4: $E[q_u, q] \leftarrow 1$
- 5: end if

6: for
$$k = 2$$
 to n^{m+1} do

7: $\forall q_u \forall q$

8: if
$$\min_{\substack{q'_u \in N_u(q_u) \ q' \in N_c(q)}} \max_{\substack{q' \in N_c(q) \ k = 1}} E[q'_u, q'] = k - 1$$

then

9:
$$E[q_u, q] \leftarrow k$$

- *10:* **end if**
- 11: end for

Infinity Infinity

Known user trajectory algorithm Adversarial user trajectory algorithm

Adversarial user trajectory algorithm

Algorithm

AdversarialUserTrajectory

1:
$$\forall q_u \forall q \ E[q_u, q] \leftarrow \infty$$

2: $\forall q_u \forall q$

- 3: if q_u is not connected in q then
- 4: $E[q_u, q] \leftarrow 1$
- 5: end if

6: for
$$k = 2$$
 to n^{m+1} do

7: $\forall q_u \forall q$

8: if
$$\min_{\substack{q'_u \in N_u(q_u) \ q' \in N_c(q)}} \max_{\substack{q' \in N_c(q) \ k = 1}} E[q'_u, q'] = k - 1$$

then

9:
$$E[q_u, q] \leftarrow k$$

- *10:* **end if**
- 11: end for

Known user trajectory algorithm Adversarial user trajectory algorithm

Adversarial user trajectory algorithm

Algorithm

AdversarialUserTrajectory

1:
$$\forall q_u \forall q \ E[q_u, q] \leftarrow \infty$$

2: $\forall q_u \forall q$

- 3: if q_u is not connected in q then
- 4: $E[q_u, q] \leftarrow 1$

end if

5: end if

9:

10:

6: for
$$k = 2$$
 to n^{m+1} do

 $E[q_u, q] \leftarrow k$

7: $\forall q_u \forall q$

11: end for

8: if
$$\min_{\substack{q'_u \in N_u(q_u) \ q' \in N_c(q)}} \max_{\substack{q' \in N_c(q)}} E[q'_u, q'] = k - 1$$

then

			2	3 0	4	5
ro	bot	1	2	3	4	5
-	1	∞	∞	1	1	1
	2	∞	∞	2	1	1
	3	∞	∞	1	1	1
	4	∞	∞	1	1	1
	5	∞	∞	1	1	1

Known user trajectory algorithm Adversarial user trajectory algorithm

Adversarial user trajectory algorithm

Algorithm

AdversarialUserTrajectory

1:
$$\forall q_u \forall q \ E[q_u, q] \leftarrow \infty$$

2: $\forall q_u \forall q$

- 3: if q_u is not connected in q then
- 4: $E[q_u, q] \leftarrow 1$

end if

5: end if

9:

10:

6: for
$$k = 2$$
 to n^{m+1} do

 $E[q_u, q] \leftarrow k$

7: $\forall q_u \forall q$

11: end for

8: if
$$\min_{\substack{q'_u \in N_u(q_u) \ q' \in N_c(q)}} \max_{\substack{q' \in N_c(q)}} E[q'_u, q'] = k - 1$$

then

		2	3	4	5
robot	1	2	3	4	5
1	4	3	1	1	1
2	4	3	2	1	1
3	4	3	1	1	1
4	4	2	1	1	1
5	3	2	1	1	1

Known user trajectory algorithm Adversarial user trajectory algorithm

The correctness and optimality

Theorem

Suppose there exists a *shortest escape trajectory* such that robotic routers are initially in configuration q and user is at location q_u . Let $e(q_u, q)$ be the length of this trajectory.

- $E[q_u, q] = k$ if and only if the length of the shortest escape trajectory $e(q_u, q)$ is k.
- *E*[*q_u*, *q*] is ∞ if and only if there exists robotic router trajectories for any possible user trajectory which satisfies the continuous connectivity.

Known user trajectory algorithm Adversarial user trajectory algorithm

Conclusion and future work

Conclusion:

- We consider the motion planning of network of robotic routers
- We presented two dynamic algorithms for **known user trajectory** and **adversarial user trajectory** model.
- Both algorithms are optimal
- The running time of algorithms are $n^{O(m)}$.

Future work:

• Finding efficient approximation algorithms

Known user trajectory algorithm Adversarial user trajectory algorithm

Acknowledgment

This work is supported in part by NSF CCF-0634823 and NSF CNS-0707939

The authors thank to **Eric Meisner** and **Wei Yang** for generating Figure 2

Known user trajectory algorithm Adversarial user trajectory algorithm

Thanks for listening

• Any questions or comments?

Known user trajectory algorithm Adversarial user trajectory algorithm

Robotic Routers Demo

Special thanks to Wei Yang for robotic routers implementation.

Known user trajectory algorithm Adversarial user trajectory algorithm

Known user trajectory

- With the given user trajectory one mobile router is sufficient
- User trajectory:

Known user trajectory algorithm Adversarial user trajectory algorithm

Sketch of the proof

- We show that $E[q_u, q] = k \Leftrightarrow e(q_u, q) = k$ by induction on k.
- Basis: k = 1 (trivial)
- Inductive step: Assume $E[q_u, q] = k \Leftrightarrow e(q_u, q) = k$ holds prove:

$$\begin{array}{l} \bullet \quad E[q_u,q] = k+1 \Rightarrow e(q_u,q) = k+1 \\ \bullet \quad E[q_u,q] = k+1 \Leftarrow e(q_u,q) = k+1 \end{array}$$

Known user trajectory algorithm Adversarial user trajectory algorithm

Sketch of the proof (cont.)

Proof (
$$E[q_u, q] = k + 1 \Rightarrow e(q_u, q) = k + 1$$
):
For contradiction, suppose that $E[q_u, q] = k + 1$ but $e(q_u, q) \neq k + 1$

- $e(q_u, q) \ge k + 1$: From inductive step: If $e(q_u, q) < k + 1$ then $E[q_u, q] < k + 1$. Contradiction.
- ② $e(q_u,q) \leq k+1$: If $E[q_u,q] = k+1$, due to the min-max relation:

•
$$\exists q'_u \in N_u(q_u), \ \exists q' \in N_c(q) \text{ such that } E[q'_u, q'] = k$$

• $\forall q'' \in N_c(q), \ E[q'_u, q''] \le k$
 $\begin{array}{c|c} & q''_u & q_u \\ \hline q' & k & \ddots & \ddots \\ \hline q & \le k & k+1 & \ddots \\ \hline q'' & \le k & \ddots & \ddots \\ \hline Hence, \forall q'' \in N_c(q), \ e(q'_u, q'') \le k \\ \hline \text{ This gives us } e(q_u, q) \le k+1 \end{array}$