Tekkotsu

Tekkotsu e e v et e e i

- at Carnegie Mellon University

= Brian Thomas

= Robots for Education (Chad Jenkins)
= Brown University
= Spring 2011

= I[mages courtesy of www.tekkotsu.org,
www.robotshop.com


http://www.tekkotsu.org/
http://www.robotshop.com/

Core aims/motivations

= Handle routine low-level robot tasks

= et developers focus on high-level
programming

= Originally developed for AIBO but now supports
a larger number of platforms.



Approach taken by Tekkotsu

= Framework for robot software development

= Libraries for routine tasks
= Made at CMU: licensed under the LGPL

Behaviors request lock on MotionCommands

) to make direct functicn calls on them
Main Process \ System
WorldState MotionManager requests
= Requests ] joint
joint positions
positions {~32ms)
Sends new

joint

- Returns
positions

System
sends state

information ‘
{via Moticn,
~32ms) o
Visi positions
Ision based on current
System g Pipeline MetionCommands RSy Slem]
sends camera

frames . . System
(~30fps) Reg|5terf:d with ST requests

Can access state anytime for Motion sgund sound

created by reactivefopen loop control Manager buffer buffer
B::;‘;“z: ;‘m currently active {~32ms)

sounds i
anytime el REE";S sound Returns
MotionCommands i 32ms
K d | I h}; ves || v mixing current of sound
ey (dynamically created) sounds ta system
S\ ' TinyFTPD
SoundManager : Y
) Albo-only, allows you to

Pre-emptive Process
u G I ds at ti
@| Shared Memory Region e
) FTP files during run time.
Other platforms use their
own FTP server.

[ ] Unshared Global Variable




Tekkotsu's design

= "Performance and low overhead are
important design considerations."

= Tekkotsu website
= Object-oriented

= Event-passing

= \Want to expose both high-level and low-level
controls

= => uses C++



Services Provided

= Visual processing

= Localization

= Forward/Inverse kinematics
= Real-time motion control

= Teleoperation



Supported Robots

= Aibo
= |[Robot Create
= Chiara

= HandEye

= Lynxmotion Arms
= Qwerk




Supported Hardware

= Cameras (using
video4linux)

= Lynxmotion SSC-32
servo controller

= Lynxmotion pan/tilt
controller

= Bioloid actuators




Supported Algorithms

= State Machines (with a GUI viewer, Storyboard)
= Kinematics

= Dual coding (high-level computer vision routines)
= CMVision (color segmentation, blob detection)

= MapBuilder (2D)

= Particle Filtering

= Motion Modelling (dead reckoning)

= Tone/pitch detection

= Random number generator



Tekkotsu uses lots of 3™ party code

NEWMAT (matrix operations), libjpeg, libpng,
libxml2, and zlib

CMVision package by Jim Bruce for color
segmentation and region grouping

= Aibo walk engine from Manuela Veloso’'s 2002
RoboSoccer entry, CMPack’'02



Where is Tekkotsu used?

= Past classes (Spring 2007 and previous)

Carnegie Mellon University (David Touretzky - Cognitive
Robotics)

University of Alberta (Michael Bowling - CMPUT412:
Experimental Mobile Robotics)

SUNY Albany (Prof. Tomek Strzalkowski - Robotics
Seminar, Spring 2005)

University of Pittsburgh (Prof. Donald Chiarulli - CS 1567:
Programming and System Design using a Mobile Robot)

Lehigh University (John Spletzer - CSE398/498, Spring
2005)

= And, apparently, some current classes as well.



Where is Tekkotsu used?

Lots of research
institutions have used (and
maybe still use) it...

Bar-llan University - Israel

Carnegie Mellon University Tekkotsu
Lab - U.S.

City University of Hong Kong - Hong
Kong

Dutch ARchitecture Project for Aibos
(DARPA) - Netherlands

Instituto Superior Técnico - Instituto de
Sistemas e Robatica - Portugal

Lawrence Technological University -
U.S.

Lehigh University - U.S.

Lund University - Sweden

National University of Singapore —
Singapore

Spelman College - U.S.

SUNY Albany - U.S.

Universita degli Studi di Messina - Italy
University of Alberta (2)- Canada

University of Applied Sciences Gielden-
Friedberg - Germany

University of Edinburgh - Scotland
University of lowa - U.S.
University of Minnesota - U.S.

University of New Orleans Robotics -
U.S.

University of Pittsburgh - U.S.

Uppsala University - Sweden



System Demo

= ...after the talk, due to wireless configuration.

= AIBOs communicate with a host computer through
a common router.




Code Walkthrough

#include "Shared/RobotInfo.h"
#ifdef TGT_HAS_ HEAD

#include "StareAtBallBehavior.h"
#include "Events/EventRouter.h®
#include "Events/VisionObjectEvent.h"
#include "Shared/WorldState.h"
#include "Motion/HeadPointerMC.h"
#include "Motion/MMAccessor.h"
#include "Shared/ProjectInterface.h”
#include "Shared/ERS7Info.h"

#include "IPC/SharedObject.h”

// double registration, run on its own or in combination with SimpleChaseBallBehavior
REGISTER BEHAVIOR MENU(StareAtBallBehavior,DEFAULT TK_MENU);
REGISTER BEHAVIOR MENU_OPT(StareAtBallBehavior, "Background Behaviors®,BEH NONEXCLUSIVE);

//! Converts degrees to radians
inline double DtoR({double deg) { return (deg/180.e*M PI); }

void StareAtBallBehavior::doStart() {
BehaviorBase: :doStart();
headpointer_id = motman->addPersistentMotion(SharedObject<HeadPointerMC>());
erouter->addListener(this,EventBase: :visObjEGID,ProjectInterface::visPinkBallSID)

}

void StareAtBallBehavior::doStop() {
erouter->removelistener(this};
motman->removeMotion(headpointer id);
BehaviorBase: :doStop();

}

//this could be cleaned up event-wise (only use a timer when out of view)
void StareAtBallBehavior::doEvent() {
float horiz=e,vert=6;
if(event->getGeneratorID()==EventBase: :visObjEGID && event->getTypelD()==EventBase::statuseTID) {
const VisionObjectEvent& objev=static_cast<const VisionObjectEvent&>(*event);
horiz=objev.getCenterX();
vert=objev.getCenterY()

}

// for portability, look to see if the host hardware has a head pan & tilt joints
const unsigned int panldx = capabilities.findOutputOffset(ERS7Info::outputNames[ERS7Info::HeadOffset+ERST7Info: :Pan0ffset]);
const unsigned int tiltIdx = capabilities.findOutputOffset(ERS7Info::outputNames[ERS7Info: :HeadOffset+ERS7Info: : Tilt0ffset]);
7(panldx==-1U || tiltIdx==-1U)

return; // guess not...

J/cout << horiz << ' ' << vert << endl;

// Very simple visual servoing control -- move the head a small distance in the direction of the target

// This is "proportional" control, because we move the head proportionally further when the error (horiz and vert) is larger
// so it homes in on the ball (here p=12, dist to move is err*FOv/2)

// http://en.wikipedia.org/wiki/Proportional control

float tilt=state->outputs[tiltIdx]-vert*CameraVertFOV/6;

float pan=state->outputs[panIdx]-horiz*CameraHorizFOV/6;

// now request access to the headpointer we added in doStart and set the joint angles
MMAccessor<HeadPointerMC> headpointer (headpointer_id)
#ifdef TGT IS AIBO

17(RobotName == ERS7Info::TargetName) {
//on an ers-7, we want to set the nod joint to look up (maximum value), since tilt can only look down
headpointer-=setJoints(tilt,pan,outputRanges[Head0ffset+Nod0ffset] [MaxRange])

} else {
J//on other models (we'll just assume ers-2xx), center the roll joint



Code Walkthrough

//this could be cleaned up event-wise (only use a timer when out of view)
void StareAtBallBehavior::doEvent() {
float horiz=@,vert=e;
i7(event-=getGeneratorID()==EventBase: :visObjEGID && event-=getTypelD()==EventBase::statusETID) {
const VisionObjectEvent& objev=static cast<const VisionObjectEvent&>(*event);
horiz=objev.getCenterx();
vert=objev.getCentery();

}

// for portability, look to see if the host hardware has a head pan & tilt joints

const unsigned int panldx = capabilities.findOutputOffset(ERS7Info::outputNames[ERS7Info: :Head0ffset+ERS7Info: :Pan0ffset]);
const unsigned int tiltIdx = capabilities.findOutputOffset(ERS7Info::outputNames[ERS7Info: :HeadOffset+ERS7Info: :Tilt0offset]);
1T (panIdx==-1U || tiltIdx==-1U)

return; f/ guess not...
Jfcout << horiz << ' ' << vert << endl;
// Very simple visual servoing control -- move the head a small distance in the direction of the target

// This is "proportional" control, because we move the head proportionally further when the error (horiz and vert) is larger
// so it homes in on the ball (here p=12, dist to move is err*FOv/2)

[/ http://en.wikipedia.org/wiki/Proportional control

float tili=state-=outputs[tiltIdx]-vert*CameraVertFOV/6;

float pan=state-=outputs[panIdx]-horiz*CameraHorizFOV/6;

// now request access to the headpointer we added in doStart and set the joint angles
MMAccessor<HeadPointerMC> headpointer(headpointer id);
#ifdef TGT IS AIBO

17(RobotName == ERS7Info::TargetName) {
//on an ers-7, we want to set the nod joint to look up (maximum value), since tilt can only look down
headpointer-=setJoints(tilt,pan,outputRanges[HeadOffset+Nod0ffset] [MaxRange]);

} else {
//on other models (we'll just assume ers-2xx), center the roll joint
headpointer-=setJoints(tilt,pan,®);

}
#else
/* really should do a kinematic solution with lookInDirection, but that assumes
* yser has done a .kin file for this robot. Let's just keep it simple and try to
* set the joints directly #/
27 (NumHeadJoints=2)
tilt/=2; // we're going to replicate the tilt parameter in the next call, so divide by 2
headpointer-=setJoints(tilt,pan,tilt);
#endif



Code Walkthrough

//! Converts degrees to radians
inline double DtoR({double deg) { return (deg/180.6*M PI}; }

#include ...

void StareAtBallBehavior::doStart() {
BehaviorBase: :doStart();
}
void StareAtBallBehavior::doStop() {

ééﬁauinrﬁaae::dnStnp{};
}

//this could be cleaned up event-wise (only use a timer when out of view)
void StareAtBallBehavior::doEvent() {

// for portability, look to see if the host hardware has a head pan & tilt joints

i%i...} f/ not
return; // quess not...

. // pan and tilt speeds by proportional servoing

Flifdef TGT IS AIBO
17 (RobotName == ERS7Info::TargetName) {

/fon an ers-7, we want to set the nod joint to look up (maximum value), since tilt cam only look down
} else {
//on other models (we'll just assume ers-2xx), center the roll joint

}
#else

/* really should do a kinematic solution with lookInDirection, but that assumes
*# user has done a .kin file for this robot.

Let's just keep it simple and try to
*¥ set the joints directly */
#endif
}



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

