Visualization in ROSproessingjs

Sungmin Lee

Brown University
Department of Computer Science

Visualization of Robot's side

= One of fundamental i1deas of Processing 1s easy
visualization.

= Of course using internal processing functions 1s still
easy, but..

= How do we visualize what robot sees on our client
machine(browser)?

= Remember that it 1s available subscribing everything
as long as it 1s currently publishing.

= Subscribing is the key!

Subscribing GStreamer message

= If you once publish GStreamer message from a robot,
you can subscribe it on your client.

= In fact, the publish message 1s NOT necessarily to be
GStreamer as long as the type of publish message 1s
rgb.
= Fortunately, “sensor msg::Image” uses rgb data type.

= Another important point 1s that you should access
<msg name>.uri, NOt Just <msg name>.

= Examples are ready.

Subscribing GStreamer message

= Here 1s an abstract structure how it works.

= As you see, you could freely communicate with the server
by using publish () and subscribe () functions.

Client Server
— Web Browser —— —— Robot ———
User - User Code < GSCam Webcam

[blnbﬂew—'"WEb Socket: - rosjs
A l
/ CMVision

processingjs ros controljs

Publish ———» Subscribe
from GS5Cam: GS5teamer Image('fgscam/image _raw')
from CMVision: blob information ('/blobs')

Sample Code: subscribe GStreamer

= First of all, you should subscribe the message.

subscribe('/gscam/image raw',getCamStream);

= This function means your program will repeatedly call getCamStream ()
function which has '/gscam/image raw'as an argument.

= Thus, your getCamStream (msg) would look similar to this:

void getCamStream(msq)
{
if(lock2)
return;

lock2 = true:
img = loadImage(msg.uri);
lock2 = false;

= Where loadImager (rgbdata) 1s an internal processing function which
converts rgb data to Pimage data type.

Example #1: Object Seeking (1/2)

In the same way, you can also get blob information from the robot side by
subscribing ' /blobs' message.

subscribe('/blobs', getBlob);

= This subscribe function will call getBlob () function repeatedly, and
getBlob () function should pass the message to local variables.

void getBlob(msg)
{

if(lockl || msg.blob count == 0)
return;

lockl = true;

for(int i=0; i<msg.blob count; i++)

|
//get blobs which have the same color as target only

blobList.add(new CBlobInfo(msg.blobs[i].red, msg.blobs[i].gre:
|

}

Where blobList 1S an ArrayList of CblobInfo class which contains
every single blob datum of each frame.

Example #1: Object Seeking (2/2)

= The full code and detail explanation of object
seeking 1s available on Brown wiki page.

= Also, Youtube video clip 1s also available here:

http://www.youtube.com/watch?v=/yQ96GDJft4&feature=player_embedded

http://code.google.com/p/brown-ros-pkg/wiki/ROSProcessingjs#Example_%231:_Blob_Seeking
http://www.youtube.com/watch?v=ZyQ96GDJft4&feature=player_embedded

Example #2: Object Tracking (1/2)

= You can also publish your movement by calling
move robot (x, z) function which is a wrapping function
of 'geometry msgs/Twist' publisher.

By doing that, you can interactively move your robot based on the
location of blobs.

//move toward to the targetBlob
void trackBlob()
{
f/if you don't see the targetBlob or you are close enough, Stop
if(targetBlob.size == @ || targetBlob.size = 150000)
move robot(0.0, ©0.0);
else

{
int blobCenter = targetBlob.left + targetBlob.width/2;
int scrCenter = scrWidth/2;

float kp = 0.01;
//5et rotation speed proportionally according to the blob's position.
int diffX = blobCenter - scrCenter;
float zval = kp * diffX;
move robot(@.1, -1 * zVal * 0.1);

}
}

Where targetBlob 1s a class which contains the biggest blob data
so that robot can track it.

Example #2: Object Tracking (2/2)

= The full code and detail explanation of object
tracking 1s available on Brown wiki page.

= Also, Youtube video clip 1s also available here:

http://www.youtube.com/watch?v=81zGQXdKblE&feature=player_embedded

http://code.google.com/p/brown-ros-pkg/wiki/ROSProcessingjs#Example_%232:_Blob_Tracking
http://www.youtube.com/watch?v=8IzGQXdKblE&feature=player_embedded

Limitation and extension

= One of the biggest limitations of Processingjs 1s that you
cannot use java libraries such as openCV, openGL since
1t 1S a pure javascript.

= However, 1t also means that you may use all the internal
functions of Processingjs without limitation to display
things on your browser very simply.

= It 1s encouraged to make an importable ROS processing
library(java) so that we could use all the java libraries for
ROS visualization.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

